org.bouncycastle.math.ec.rfc7748.X25519 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-lts8on Show documentation
Show all versions of bcprov-lts8on Show documentation
The Long Term Stable (LTS) Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains the JCA/JCE provider and low-level API for the BC LTS version 2.73.7 for Java 8 and later.
package org.bouncycastle.math.ec.rfc7748;
import java.security.SecureRandom;
import org.bouncycastle.math.ec.rfc8032.Ed25519;
import org.bouncycastle.util.Arrays;
public abstract class X25519
{
public static class Friend
{
private static final Friend INSTANCE = new Friend();
private Friend() {}
}
public static final int POINT_SIZE = 32;
public static final int SCALAR_SIZE = 32;
private static class F extends X25519Field {};
private static final int C_A = 486662;
private static final int C_A24 = (C_A + 2)/4;
// private static final int[] SQRT_NEG_486664 = { 0x03457E06, 0x03812ABF, 0x01A82CC6, 0x028A5BE8, 0x018B43A7,
// 0x03FC4F7E, 0x02C23700, 0x006BBD27, 0x03A30500, 0x001E4DDB };
public static boolean calculateAgreement(byte[] k, int kOff, byte[] u, int uOff, byte[] r, int rOff)
{
scalarMult(k, kOff, u, uOff, r, rOff);
return !Arrays.areAllZeroes(r, rOff, POINT_SIZE);
}
private static int decode32(byte[] bs, int off)
{
int n = bs[off] & 0xFF;
n |= (bs[++off] & 0xFF) << 8;
n |= (bs[++off] & 0xFF) << 16;
n |= bs[++off] << 24;
return n;
}
private static void decodeScalar(byte[] k, int kOff, int[] n)
{
for (int i = 0; i < 8; ++i)
{
n[i] = decode32(k, kOff + i * 4);
}
n[0] &= 0xFFFFFFF8;
n[7] &= 0x7FFFFFFF;
n[7] |= 0x40000000;
}
public static void generatePrivateKey(SecureRandom random, byte[] k)
{
if (k.length != SCALAR_SIZE)
{
throw new IllegalArgumentException("k");
}
random.nextBytes(k);
k[0] &= 0xF8;
k[SCALAR_SIZE - 1] &= 0x7F;
k[SCALAR_SIZE - 1] |= 0x40;
}
public static void generatePublicKey(byte[] k, int kOff, byte[] r, int rOff)
{
scalarMultBase(k, kOff, r, rOff);
}
private static void pointDouble(int[] x, int[] z)
{
int[] a = F.create();
int[] b = F.create();
F.apm(x, z, a, b);
F.sqr(a, a);
F.sqr(b, b);
F.mul(a, b, x);
F.sub(a, b, a);
F.mul(a, C_A24, z);
F.add(z, b, z);
F.mul(z, a, z);
}
public static void precompute()
{
Ed25519.precompute();
}
public static void scalarMult(byte[] k, int kOff, byte[] u, int uOff, byte[] r, int rOff)
{
int[] n = new int[8]; decodeScalar(k, kOff, n);
int[] x1 = F.create(); F.decode(u, uOff, x1);
int[] x2 = F.create(); F.copy(x1, 0, x2, 0);
int[] z2 = F.create(); z2[0] = 1;
int[] x3 = F.create(); x3[0] = 1;
int[] z3 = F.create();
int[] t1 = F.create();
int[] t2 = F.create();
// assert n[7] >>> 30 == 1;
int bit = 254, swap = 1;
do
{
F.apm(x3, z3, t1, x3);
F.apm(x2, z2, z3, x2);
F.mul(t1, x2, t1);
F.mul(x3, z3, x3);
F.sqr(z3, z3);
F.sqr(x2, x2);
F.sub(z3, x2, t2);
F.mul(t2, C_A24, z2);
F.add(z2, x2, z2);
F.mul(z2, t2, z2);
F.mul(x2, z3, x2);
F.apm(t1, x3, x3, z3);
F.sqr(x3, x3);
F.sqr(z3, z3);
F.mul(z3, x1, z3);
--bit;
int word = bit >>> 5, shift = bit & 0x1F;
int kt = (n[word] >>> shift) & 1;
swap ^= kt;
F.cswap(swap, x2, x3);
F.cswap(swap, z2, z3);
swap = kt;
}
while (bit >= 3);
// assert swap == 0;
for (int i = 0; i < 3; ++i)
{
pointDouble(x2, z2);
}
F.inv(z2, z2);
F.mul(x2, z2, x2);
F.normalize(x2);
F.encode(x2, r, rOff);
}
public static void scalarMultBase(byte[] k, int kOff, byte[] r, int rOff)
{
int[] y = F.create();
int[] z = F.create();
Ed25519.scalarMultBaseYZ(Friend.INSTANCE, k, kOff, y, z);
F.apm(z, y, y, z);
F.inv(z, z);
F.mul(y, z, y);
F.normalize(y);
F.encode(y, r, rOff);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy