org.bouncycastle.tls.crypto.impl.TlsBlockCipher Maven / Gradle / Ivy
package org.bouncycastle.tls.crypto.impl;
import java.io.IOException;
import java.security.SecureRandom;
import org.bouncycastle.tls.AlertDescription;
import org.bouncycastle.tls.ProtocolVersion;
import org.bouncycastle.tls.SecurityParameters;
import org.bouncycastle.tls.TlsFatalAlert;
import org.bouncycastle.tls.TlsUtils;
import org.bouncycastle.tls.crypto.TlsCipher;
import org.bouncycastle.tls.crypto.TlsCrypto;
import org.bouncycastle.tls.crypto.TlsCryptoParameters;
import org.bouncycastle.tls.crypto.TlsDecodeResult;
import org.bouncycastle.tls.crypto.TlsEncodeResult;
import org.bouncycastle.tls.crypto.TlsHMAC;
/**
* A generic TLS 1.0-1.2 block cipher. This can be used for AES or 3DES for example.
*/
public class TlsBlockCipher
implements TlsCipher
{
protected final TlsCrypto crypto;
protected final TlsCryptoParameters cryptoParams;
protected final byte[] randomData;
protected final boolean encryptThenMAC;
protected final boolean useExplicitIV;
protected final boolean acceptExtraPadding;
protected final boolean useExtraPadding;
protected final TlsBlockCipherImpl decryptCipher, encryptCipher;
protected final TlsSuiteMac readMac, writeMac;
public TlsBlockCipher(TlsCrypto crypto, TlsCryptoParameters cryptoParams, TlsBlockCipherImpl encryptCipher,
TlsBlockCipherImpl decryptCipher, TlsHMAC clientMac, TlsHMAC serverMac, int cipherKeySize) throws IOException
{
SecurityParameters securityParameters = cryptoParams.getSecurityParametersHandshake();
ProtocolVersion negotiatedVersion = securityParameters.getNegotiatedVersion();
if (TlsImplUtils.isTLSv13(negotiatedVersion))
{
throw new TlsFatalAlert(AlertDescription.internal_error);
}
this.cryptoParams = cryptoParams;
this.crypto = crypto;
this.randomData = cryptoParams.getNonceGenerator().generateNonce(256);
this.encryptThenMAC = securityParameters.isEncryptThenMAC();
this.useExplicitIV = TlsImplUtils.isTLSv11(negotiatedVersion);
this.acceptExtraPadding = !negotiatedVersion.isSSL();
/*
* Don't use variable-length padding with truncated MACs.
*
* See "Tag Size Does Matter: Attacks and Proofs for the TLS Record Protocol", Paterson,
* Ristenpart, Shrimpton.
*
* TODO[DTLS] Consider supporting in DTLS (without exceeding send limit though)
*/
this.useExtraPadding = securityParameters.isExtendedPadding()
&& ProtocolVersion.TLSv10.isEqualOrEarlierVersionOf(negotiatedVersion)
&& (encryptThenMAC || !securityParameters.isTruncatedHMac());
this.encryptCipher = encryptCipher;
this.decryptCipher = decryptCipher;
TlsBlockCipherImpl clientCipher, serverCipher;
if (cryptoParams.isServer())
{
clientCipher = decryptCipher;
serverCipher = encryptCipher;
}
else
{
clientCipher = encryptCipher;
serverCipher = decryptCipher;
}
int key_block_size = (2 * cipherKeySize) + clientMac.getMacLength() + serverMac.getMacLength();
// From TLS 1.1 onwards, block ciphers don't need IVs from the key_block
if (!useExplicitIV)
{
key_block_size += clientCipher.getBlockSize() + serverCipher.getBlockSize();
}
byte[] key_block = TlsImplUtils.calculateKeyBlock(cryptoParams, key_block_size);
int offset = 0;
clientMac.setKey(key_block, offset, clientMac.getMacLength());
offset += clientMac.getMacLength();
serverMac.setKey(key_block, offset, serverMac.getMacLength());
offset += serverMac.getMacLength();
clientCipher.setKey(key_block, offset, cipherKeySize);
offset += cipherKeySize;
serverCipher.setKey(key_block, offset, cipherKeySize);
offset += cipherKeySize;
if (!useExplicitIV)
{
clientCipher.init(key_block, offset, clientCipher.getBlockSize());
offset += clientCipher.getBlockSize();
serverCipher.init(key_block, offset, serverCipher.getBlockSize());
offset += serverCipher.getBlockSize();
}
if (offset != key_block_size)
{
throw new TlsFatalAlert(AlertDescription.internal_error);
}
if (cryptoParams.isServer())
{
this.writeMac = new TlsSuiteHMac(cryptoParams, serverMac);
this.readMac = new TlsSuiteHMac(cryptoParams, clientMac);
}
else
{
this.writeMac = new TlsSuiteHMac(cryptoParams, clientMac);
this.readMac = new TlsSuiteHMac(cryptoParams, serverMac);
}
}
public int getCiphertextDecodeLimit(int plaintextLimit)
{
int blockSize = decryptCipher.getBlockSize();
int macSize = readMac.getSize();
int maxPadding = 256;
return getCiphertextLength(blockSize, macSize, maxPadding, plaintextLimit);
}
public int getCiphertextEncodeLimit(int plaintextLength, int plaintextLimit)
{
int blockSize = encryptCipher.getBlockSize();
int macSize = writeMac.getSize();
int maxPadding = useExtraPadding ? 256 : blockSize;
return getCiphertextLength(blockSize, macSize, maxPadding, plaintextLength);
}
public int getPlaintextLimit(int ciphertextLimit)
{
int blockSize = encryptCipher.getBlockSize();
int macSize = writeMac.getSize();
int plaintextLimit = ciphertextLimit;
// Leave room for the MAC, and require block-alignment
if (encryptThenMAC)
{
plaintextLimit -= macSize;
plaintextLimit -= plaintextLimit % blockSize;
}
else
{
plaintextLimit -= plaintextLimit % blockSize;
plaintextLimit -= macSize;
}
// Minimum 1 byte of padding
--plaintextLimit;
// An explicit IV consumes 1 block
if (useExplicitIV)
{
plaintextLimit -= blockSize;
}
return plaintextLimit;
}
public TlsEncodeResult encodePlaintext(long seqNo, short contentType, ProtocolVersion recordVersion,
int headerAllocation, byte[] plaintext, int offset, int len) throws IOException
{
int blockSize = encryptCipher.getBlockSize();
int macSize = writeMac.getSize();
int enc_input_length = len;
if (!encryptThenMAC)
{
enc_input_length += macSize;
}
int padding_length = blockSize - (enc_input_length % blockSize);
if (useExtraPadding)
{
// Add a random number of extra blocks worth of padding
int maxExtraPadBlocks = (256 - padding_length) / blockSize;
int actualExtraPadBlocks = chooseExtraPadBlocks(crypto.getSecureRandom(), maxExtraPadBlocks);
padding_length += actualExtraPadBlocks * blockSize;
}
int totalSize = len + macSize + padding_length;
if (useExplicitIV)
{
totalSize += blockSize;
}
byte[] outBuf = new byte[headerAllocation + totalSize];
int outOff = headerAllocation;
if (useExplicitIV)
{
byte[] explicitIV = cryptoParams.getNonceGenerator().generateNonce(blockSize);
encryptCipher.init(explicitIV, 0, blockSize);
System.arraycopy(explicitIV, 0, outBuf, outOff, blockSize);
outOff += blockSize;
}
int blocks_start = outOff;
System.arraycopy(plaintext, offset, outBuf, outOff, len);
outOff += len;
if (!encryptThenMAC)
{
byte[] mac = writeMac.calculateMac(seqNo, contentType, plaintext, offset, len);
System.arraycopy(mac, 0, outBuf, outOff, mac.length);
outOff += mac.length;
}
byte padByte = (byte)(padding_length - 1);
for (int i = 0; i < padding_length; ++i)
{
outBuf[outOff++] = padByte;
}
encryptCipher.doFinal(outBuf, blocks_start, outOff - blocks_start, outBuf, blocks_start);
if (encryptThenMAC)
{
byte[] mac = writeMac.calculateMac(seqNo, contentType, outBuf, headerAllocation, outOff - headerAllocation);
System.arraycopy(mac, 0, outBuf, outOff, mac.length);
outOff += mac.length;
}
if (outOff != outBuf.length)
{
throw new TlsFatalAlert(AlertDescription.internal_error);
}
return new TlsEncodeResult(outBuf, 0, outBuf.length, contentType);
}
public TlsDecodeResult decodeCiphertext(long seqNo, short recordType, ProtocolVersion recordVersion,
byte[] ciphertext, int offset, int len) throws IOException
{
int blockSize = decryptCipher.getBlockSize();
int macSize = readMac.getSize();
int minLen = blockSize;
if (encryptThenMAC)
{
minLen += macSize;
}
else
{
minLen = Math.max(minLen, macSize + 1);
}
if (useExplicitIV)
{
minLen += blockSize;
}
if (len < minLen)
{
throw new TlsFatalAlert(AlertDescription.decode_error);
}
int blocks_length = len;
if (encryptThenMAC)
{
blocks_length -= macSize;
}
if (blocks_length % blockSize != 0)
{
throw new TlsFatalAlert(AlertDescription.decryption_failed);
}
if (encryptThenMAC)
{
byte[] expectedMac = readMac.calculateMac(seqNo, recordType, ciphertext, offset, len - macSize);
boolean badMac = !TlsUtils.constantTimeAreEqual(macSize, expectedMac, 0, ciphertext,
offset + len - macSize);
if (badMac)
{
/*
* RFC 7366 3. The MAC SHALL be evaluated before any further processing such as
* decryption is performed, and if the MAC verification fails, then processing SHALL
* terminate immediately. For TLS, a fatal bad_record_mac MUST be generated [2]. For
* DTLS, the record MUST be discarded, and a fatal bad_record_mac MAY be generated
* [4]. This immediate response to a bad MAC eliminates any timing channels that may
* be available through the use of manipulated packet data.
*/
throw new TlsFatalAlert(AlertDescription.bad_record_mac);
}
}
if (useExplicitIV)
{
decryptCipher.init(ciphertext, offset, blockSize);
offset += blockSize;
blocks_length -= blockSize;
}
decryptCipher.doFinal(ciphertext, offset, blocks_length, ciphertext, offset);
// If there's anything wrong with the padding, this will return zero
int totalPad = checkPaddingConstantTime(ciphertext, offset, blocks_length, blockSize, encryptThenMAC ? 0 : macSize);
boolean badMac = (totalPad == 0);
int dec_output_length = blocks_length - totalPad;
if (!encryptThenMAC)
{
dec_output_length -= macSize;
byte[] expectedMac = readMac.calculateMacConstantTime(seqNo, recordType, ciphertext, offset,
dec_output_length, blocks_length - macSize, randomData);
badMac |= !TlsUtils.constantTimeAreEqual(macSize, expectedMac, 0, ciphertext, offset + dec_output_length);
}
if (badMac)
{
throw new TlsFatalAlert(AlertDescription.bad_record_mac);
}
return new TlsDecodeResult(ciphertext, offset, dec_output_length, recordType);
}
public void rekeyDecoder() throws IOException
{
throw new TlsFatalAlert(AlertDescription.internal_error);
}
public void rekeyEncoder() throws IOException
{
throw new TlsFatalAlert(AlertDescription.internal_error);
}
public boolean usesOpaqueRecordType()
{
return false;
}
protected int checkPaddingConstantTime(byte[] buf, int off, int len, int blockSize, int macSize)
{
int end = off + len;
byte lastByte = buf[end - 1];
int padlen = lastByte & 0xff;
int totalPad = padlen + 1;
int dummyIndex = 0;
byte padDiff = 0;
int totalPadLimit = Math.min(acceptExtraPadding ? 256 : blockSize, len - macSize);
if (totalPad > totalPadLimit)
{
totalPad = 0;
}
else
{
int padPos = end - totalPad;
do
{
padDiff |= (buf[padPos++] ^ lastByte);
}
while (padPos < end);
dummyIndex = totalPad;
if (padDiff != 0)
{
totalPad = 0;
}
}
// Run some extra dummy checks so the number of checks is always constant
{
byte[] dummyPad = randomData;
while (dummyIndex < 256)
{
padDiff |= (dummyPad[dummyIndex++] ^ lastByte);
}
// Ensure the above loop is not eliminated
dummyPad[0] ^= padDiff;
}
return totalPad;
}
protected int chooseExtraPadBlocks(SecureRandom r, int max)
{
// return r.nextInt(max + 1);
int x = r.nextInt();
int n = lowestBitSet(x);
return Math.min(n, max);
}
protected int getCiphertextLength(int blockSize, int macSize, int maxPadding, int plaintextLength)
{
int ciphertextLength = plaintextLength;
// An explicit IV consumes 1 block
if (useExplicitIV)
{
ciphertextLength += blockSize;
}
// Leave room for the MAC and (block-aligning) padding
ciphertextLength += maxPadding;
if (encryptThenMAC)
{
ciphertextLength -= (ciphertextLength % blockSize);
ciphertextLength += macSize;
}
else
{
ciphertextLength += macSize;
ciphertextLength -= (ciphertextLength % blockSize);
}
return ciphertextLength;
}
protected int lowestBitSet(int x)
{
if (x == 0)
{
return 32;
}
int n = 0;
while ((x & 1) == 0)
{
++n;
x >>= 1;
}
return n;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy