Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package operand
import "github.com/mmcloughlin/avo/reg"
// Pure type assertion checks:
// IsRegister returns whether op has type reg.Register.
func IsRegister(op Op) bool { _, ok := op.(reg.Register); return ok }
// IsMem returns whether op has type Mem.
func IsMem(op Op) bool { _, ok := op.(Mem); return ok }
// IsRel returns whether op has type Rel.
func IsRel(op Op) bool { _, ok := op.(Rel); return ok }
// Checks corresponding to specific operand types in the Intel Manual:
// Is1 returns true if op is the immediate constant 1.
func Is1(op Op) bool {
i, ok := op.(U8)
return ok && i == 1
}
// Is3 returns true if op is the immediate constant 3.
func Is3(op Op) bool {
i, ok := op.(U8)
return ok && i == 3
}
// IsIMM2U returns true if op is a 2-bit unsigned immediate (less than 4).
func IsIMM2U(op Op) bool {
i, ok := op.(U8)
return ok && i < 4
}
// IsIMM8 returns true is op is an 8-bit immediate.
func IsIMM8(op Op) bool {
_, ok := op.(U8)
return ok
}
// IsIMM16 returns true is op is a 16-bit immediate.
func IsIMM16(op Op) bool {
_, ok := op.(U16)
return ok
}
// IsIMM32 returns true is op is a 32-bit immediate.
func IsIMM32(op Op) bool {
_, ok := op.(U32)
return ok
}
// IsIMM64 returns true is op is a 64-bit immediate.
func IsIMM64(op Op) bool {
_, ok := op.(U64)
return ok
}
// IsAL returns true if op is the AL register.
func IsAL(op Op) bool {
return op == reg.AL
}
// IsCL returns true if op is the CL register.
func IsCL(op Op) bool {
return op == reg.CL
}
// IsAX returns true if op is the 16-bit AX register.
func IsAX(op Op) bool {
return op == reg.AX
}
// IsEAX returns true if op is the 32-bit EAX register.
func IsEAX(op Op) bool {
return op == reg.EAX
}
// IsRAX returns true if op is the 64-bit RAX register.
func IsRAX(op Op) bool {
return op == reg.RAX
}
// IsR8 returns true if op is an 8-bit general-purpose register.
func IsR8(op Op) bool {
return IsGP(op, 1)
}
// IsR16 returns true if op is a 16-bit general-purpose register.
func IsR16(op Op) bool {
return IsGP(op, 2)
}
// IsR32 returns true if op is a 32-bit general-purpose register.
func IsR32(op Op) bool {
return IsGP(op, 4)
}
// IsR64 returns true if op is a 64-bit general-purpose register.
func IsR64(op Op) bool {
return IsGP(op, 8)
}
// IsPseudo returns true if op is a pseudo register.
func IsPseudo(op Op) bool {
return IsRegisterKind(op, reg.KindPseudo)
}
// IsGP returns true if op is a general-purpose register of size n bytes.
func IsGP(op Op, n uint) bool {
return IsRegisterKindSize(op, reg.KindGP, n)
}
// IsXMM0 returns true if op is the X0 register.
func IsXMM0(op Op) bool {
return op == reg.X0
}
// IsXMM returns true if op is a 128-bit XMM register.
func IsXMM(op Op) bool {
return IsRegisterKindSize(op, reg.KindVector, 16)
}
// IsYMM returns true if op is a 256-bit YMM register.
func IsYMM(op Op) bool {
return IsRegisterKindSize(op, reg.KindVector, 32)
}
// IsRegisterKindSize returns true if op is a register of the given kind and size in bytes.
func IsRegisterKindSize(op Op, k reg.Kind, n uint) bool {
r, ok := op.(reg.Register)
return ok && r.Kind() == k && r.Size() == n
}
// IsRegisterKind returns true if op is a register of the given kind.
func IsRegisterKind(op Op, k reg.Kind) bool {
r, ok := op.(reg.Register)
return ok && r.Kind() == k
}
// IsM returns true if op is a 16-, 32- or 64-bit memory operand.
func IsM(op Op) bool {
// TODO(mbm): confirm "m" check is defined correctly
// Intel manual: "A 16-, 32- or 64-bit operand in memory."
return IsM16(op) || IsM32(op) || IsM64(op)
}
// IsM8 returns true if op is an 8-bit memory operand.
func IsM8(op Op) bool {
// TODO(mbm): confirm "m8" check is defined correctly
// Intel manual: "A byte operand in memory, usually expressed as a variable or
// array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. In 64-bit
// mode, it is pointed to by the RSI or RDI registers."
return IsMSize(op, 1)
}
// IsM16 returns true if op is a 16-bit memory operand.
func IsM16(op Op) bool {
return IsMSize(op, 2)
}
// IsM32 returns true if op is a 16-bit memory operand.
func IsM32(op Op) bool {
return IsMSize(op, 4)
}
// IsM64 returns true if op is a 64-bit memory operand.
func IsM64(op Op) bool {
return IsMSize(op, 8)
}
// IsMSize returns true if op is a memory operand using general-purpose address
// registers of the given size in bytes.
func IsMSize(op Op, n uint) bool {
// TODO(mbm): should memory operands have a size attribute as well?
// TODO(mbm): m8,m16,m32,m64 checks do not actually check size
m, ok := op.(Mem)
return ok && IsMReg(m.Base) && (m.Index == nil || IsMReg(m.Index))
}
// IsMReg returns true if op is a register that can be used in a memory operand.
func IsMReg(op Op) bool {
return IsPseudo(op) || IsRegisterKind(op, reg.KindGP)
}
// IsM128 returns true if op is a 128-bit memory operand.
func IsM128(op Op) bool {
// TODO(mbm): should "m128" be the same as "m64"?
return IsM64(op)
}
// IsM256 returns true if op is a 256-bit memory operand.
func IsM256(op Op) bool {
// TODO(mbm): should "m256" be the same as "m64"?
return IsM64(op)
}
// IsVM32X returns true if op is a vector memory operand with 32-bit XMM index.
func IsVM32X(op Op) bool {
return IsVmx(op)
}
// IsVM64X returns true if op is a vector memory operand with 64-bit XMM index.
func IsVM64X(op Op) bool {
return IsVmx(op)
}
// IsVmx returns true if op is a vector memory operand with XMM index.
func IsVmx(op Op) bool {
return isvm(op, IsXMM)
}
// IsVM32Y returns true if op is a vector memory operand with 32-bit YMM index.
func IsVM32Y(op Op) bool {
return IsVmy(op)
}
// IsVM64Y returns true if op is a vector memory operand with 64-bit YMM index.
func IsVM64Y(op Op) bool {
return IsVmy(op)
}
// IsVmy returns true if op is a vector memory operand with YMM index.
func IsVmy(op Op) bool {
return isvm(op, IsYMM)
}
func isvm(op Op, idx func(Op) bool) bool {
m, ok := op.(Mem)
return ok && IsR64(m.Base) && idx(m.Index)
}
// IsREL8 returns true if op is an 8-bit offset relative to instruction pointer.
func IsREL8(op Op) bool {
r, ok := op.(Rel)
return ok && r == Rel(int8(r))
}
// IsREL32 returns true if op is an offset relative to instruction pointer, or a
// label reference.
func IsREL32(op Op) bool {
// TODO(mbm): should labels be considered separately?
_, rel := op.(Rel)
_, label := op.(LabelRef)
return rel || label
}