All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bytedeco.javacpp.opencv_calib3d Maven / Gradle / Ivy

The newest version!
// Targeted by JavaCPP version 1.4.4: DO NOT EDIT THIS FILE

package org.bytedeco.javacpp;

import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;

import static org.bytedeco.javacpp.opencv_core.*;
import static org.bytedeco.javacpp.opencv_imgproc.*;
import static org.bytedeco.javacpp.opencv_imgcodecs.*;
import static org.bytedeco.javacpp.opencv_videoio.*;
import static org.bytedeco.javacpp.opencv_highgui.*;
import static org.bytedeco.javacpp.opencv_flann.*;
import static org.bytedeco.javacpp.opencv_features2d.*;

public class opencv_calib3d extends org.bytedeco.javacpp.helper.opencv_calib3d {
    static { Loader.load(); }

// Parsed from 

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

// #ifndef OPENCV_CALIB3D_C_H
// #define OPENCV_CALIB3D_C_H

// #include "opencv2/core/types_c.h"

// #ifdef __cplusplus
// #endif

/* Calculates fundamental matrix given a set of corresponding points */
public static final int CV_FM_7POINT = 1;
public static final int CV_FM_8POINT = 2;

public static final int CV_LMEDS = 4;
public static final int CV_RANSAC = 8;

public static final int CV_FM_LMEDS_ONLY =  CV_LMEDS;
public static final int CV_FM_RANSAC_ONLY = CV_RANSAC;
public static final int CV_FM_LMEDS = CV_LMEDS;
public static final int CV_FM_RANSAC = CV_RANSAC;

/** enum  */
public static final int
    CV_ITERATIVE = 0,
    CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
    CV_P3P = 2, // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
    CV_DLS = 3; // Joel A. Hesch and Stergios I. Roumeliotis. "A Direct Least-Squares (DLS) Method for PnP"

public static final int CV_CALIB_CB_ADAPTIVE_THRESH =  1;
public static final int CV_CALIB_CB_NORMALIZE_IMAGE =  2;
public static final int CV_CALIB_CB_FILTER_QUADS =     4;
public static final int CV_CALIB_CB_FAST_CHECK =       8;

public static final int CV_CALIB_USE_INTRINSIC_GUESS =  1;
public static final int CV_CALIB_FIX_ASPECT_RATIO =     2;
public static final int CV_CALIB_FIX_PRINCIPAL_POINT =  4;
public static final int CV_CALIB_ZERO_TANGENT_DIST =    8;
public static final int CV_CALIB_FIX_FOCAL_LENGTH = 16;
public static final int CV_CALIB_FIX_K1 =  32;
public static final int CV_CALIB_FIX_K2 =  64;
public static final int CV_CALIB_FIX_K3 =  128;
public static final int CV_CALIB_FIX_K4 =  2048;
public static final int CV_CALIB_FIX_K5 =  4096;
public static final int CV_CALIB_FIX_K6 =  8192;
public static final int CV_CALIB_RATIONAL_MODEL = 16384;
public static final int CV_CALIB_THIN_PRISM_MODEL = 32768;
public static final int CV_CALIB_FIX_S1_S2_S3_S4 =  65536;
public static final int CV_CALIB_TILTED_MODEL =  262144;
public static final int CV_CALIB_FIX_TAUX_TAUY =  524288;
public static final int CV_CALIB_FIX_TANGENT_DIST = 2097152;

public static final int CV_CALIB_NINTRINSIC = 18;

public static final int CV_CALIB_FIX_INTRINSIC =  256;
public static final int CV_CALIB_SAME_FOCAL_LENGTH = 512;

public static final int CV_CALIB_ZERO_DISPARITY = 1024;

/* stereo correspondence parameters and functions */
public static final int CV_STEREO_BM_NORMALIZED_RESPONSE =  0;
public static final int CV_STEREO_BM_XSOBEL =               1;

// #ifdef __cplusplus // extern "C"

//////////////////////////////////////////////////////////////////////////////////////////
@NoOffset public static class CvLevMarq extends Pointer {
    static { Loader.load(); }
    /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
    public CvLevMarq(Pointer p) { super(p); }
    /** Native array allocator. Access with {@link Pointer#position(long)}. */
    public CvLevMarq(long size) { super((Pointer)null); allocateArray(size); }
    private native void allocateArray(long size);
    @Override public CvLevMarq position(long position) {
        return (CvLevMarq)super.position(position);
    }

    public CvLevMarq() { super((Pointer)null); allocate(); }
    private native void allocate();
    public CvLevMarq( int nparams, int nerrs, @ByVal(nullValue = "CvTermCriteria(cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON))") CvTermCriteria criteria,
                  @Cast("bool") boolean completeSymmFlag/*=false*/ ) { super((Pointer)null); allocate(nparams, nerrs, criteria, completeSymmFlag); }
    private native void allocate( int nparams, int nerrs, @ByVal(nullValue = "CvTermCriteria(cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON))") CvTermCriteria criteria,
                  @Cast("bool") boolean completeSymmFlag/*=false*/ );
    public CvLevMarq( int nparams, int nerrs ) { super((Pointer)null); allocate(nparams, nerrs); }
    private native void allocate( int nparams, int nerrs );
    public native void init( int nparams, int nerrs, @ByVal(nullValue = "CvTermCriteria(cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON))") CvTermCriteria criteria,
                  @Cast("bool") boolean completeSymmFlag/*=false*/ );
    public native void init( int nparams, int nerrs );
    public native @Cast("bool") boolean update( @Const @ByPtrRef CvMat param, @ByPtrRef CvMat J, @ByPtrRef CvMat err );
    public native @Cast("bool") boolean updateAlt( @Const @ByPtrRef CvMat param, @ByPtrRef CvMat JtJ, @ByPtrRef CvMat JtErr, @ByPtrRef DoublePointer errNorm );
    public native @Cast("bool") boolean updateAlt( @Const @ByPtrRef CvMat param, @ByPtrRef CvMat JtJ, @ByPtrRef CvMat JtErr, @ByPtrRef DoubleBuffer errNorm );
    public native @Cast("bool") boolean updateAlt( @Const @ByPtrRef CvMat param, @ByPtrRef CvMat JtJ, @ByPtrRef CvMat JtErr, @ByPtrRef double[] errNorm );

    public native void clear();
    public native void step();
    /** enum CvLevMarq:: */
    public static final int DONE = 0, STARTED = 1, CALC_J = 2, CHECK_ERR = 3;

    public native @Ptr CvMat mask(); public native CvLevMarq mask(CvMat mask);
    public native @Ptr CvMat prevParam(); public native CvLevMarq prevParam(CvMat prevParam);
    public native @Ptr CvMat param(); public native CvLevMarq param(CvMat param);
    public native @Ptr CvMat J(); public native CvLevMarq J(CvMat J);
    public native @Ptr CvMat err(); public native CvLevMarq err(CvMat err);
    public native @Ptr CvMat JtJ(); public native CvLevMarq JtJ(CvMat JtJ);
    public native @Ptr CvMat JtJN(); public native CvLevMarq JtJN(CvMat JtJN);
    public native @Ptr CvMat JtErr(); public native CvLevMarq JtErr(CvMat JtErr);
    public native @Ptr CvMat JtJV(); public native CvLevMarq JtJV(CvMat JtJV);
    public native @Ptr CvMat JtJW(); public native CvLevMarq JtJW(CvMat JtJW);
    public native double prevErrNorm(); public native CvLevMarq prevErrNorm(double prevErrNorm);
    public native double errNorm(); public native CvLevMarq errNorm(double errNorm);
    public native int lambdaLg10(); public native CvLevMarq lambdaLg10(int lambdaLg10);
    public native @ByRef CvTermCriteria criteria(); public native CvLevMarq criteria(CvTermCriteria criteria);
    public native int state(); public native CvLevMarq state(int state);
    public native int iters(); public native CvLevMarq iters(int iters);
    public native @Cast("bool") boolean completeSymmFlag(); public native CvLevMarq completeSymmFlag(boolean completeSymmFlag);
    public native int solveMethod(); public native CvLevMarq solveMethod(int solveMethod);
}

// #endif

// #endif /* OPENCV_CALIB3D_C_H */


// Parsed from 

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

// #ifndef OPENCV_CALIB3D_HPP
// #define OPENCV_CALIB3D_HPP

// #include "opencv2/core.hpp"
// #include "opencv2/features2d.hpp"
// #include "opencv2/core/affine.hpp"

/**
  \defgroup calib3d Camera Calibration and 3D Reconstruction

The functions in this section use a so-called pinhole camera model. In this model, a scene view is formed by projecting 3D points into the image plane using a perspective transformation.

\f[s \; m' = A [R|t] M'\f]

or

\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}\f]

where:

- \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space - \f$(u, v)\f$ are the coordinates of the projection point in pixels - \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters - \f$(cx, cy)\f$ is a principal point that is usually at the image center - \f$fx, fy\f$ are the focal lengths expressed in pixel units.

Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled (multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa, rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above is equivalent to the following (when \f$z \ne 0\f$ ):

\f[\begin{array}{l} \vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\ x' = x/z \\ y' = y/z \\ u = f_x*x' + c_x \\ v = f_y*y' + c_y \end{array}\f]

The following figure illustrates the pinhole camera model.

![Pinhole camera model](pics/pinhole_camera_model.png)

Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion. So, the above model is extended as:

\f[\begin{array}{l} \vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\ x' = x/z \\ y' = y/z \\ x'' = x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\ y'' = y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\ \text{where} \quad r^2 = x'^2 + y'^2 \\ u = f_x*x'' + c_x \\ v = f_y*y'' + c_y \end{array}\f]

\f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion coefficients. Higher-order coefficients are not considered in OpenCV.

The next figures show two common types of radial distortion: barrel distortion (typically \f$ k_1 < 0 \f$) and pincushion distortion (typically \f$ k_1 > 0 \f$).

![](pics/distortion_examples.png) ![](pics/distortion_examples2.png)

In some cases the image sensor may be tilted in order to focus an oblique plane in front of the camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and \f$y''\f$. This distortion can be modelled in the following way, see e.g. \cite Louhichi07.

\f[\begin{array}{l} s\vecthree{x'''}{y'''}{1} = \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)} {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\ u = f_x*x''' + c_x \\ v = f_y*y''' + c_y \end{array}\f]

where the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter \f$\tau_x\f$ and \f$\tau_y\f$, respectively,

\f[ R(\tau_x, \tau_y) = \vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)} \vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} = \vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)} {0}{\cos(\tau_x)}{\sin(\tau_x)} {\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}. \f]

In the functions below the coefficients are passed or returned as

\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]

vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera parameters. And they remain the same regardless of the captured image resolution. If, for example, a camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and \f$c_y\f$ need to be scaled appropriately.

The functions below use the above model to do the following:

- Project 3D points to the image plane given intrinsic and extrinsic parameters. - Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their projections. - Estimate intrinsic and extrinsic camera parameters from several views of a known calibration pattern (every view is described by several 3D-2D point correspondences). - Estimate the relative position and orientation of the stereo camera "heads" and compute the *rectification* transformation that makes the camera optical axes parallel.

\note - A calibration sample for 3 cameras in horizontal position can be found at opencv_source_code/samples/cpp/3calibration.cpp - A calibration sample based on a sequence of images can be found at opencv_source_code/samples/cpp/calibration.cpp - A calibration sample in order to do 3D reconstruction can be found at opencv_source_code/samples/cpp/build3dmodel.cpp - A calibration sample of an artificially generated camera and chessboard patterns can be found at opencv_source_code/samples/cpp/calibration_artificial.cpp - A calibration example on stereo calibration can be found at opencv_source_code/samples/cpp/stereo_calib.cpp - A calibration example on stereo matching can be found at opencv_source_code/samples/cpp/stereo_match.cpp - (Python) A camera calibration sample can be found at opencv_source_code/samples/python/calibrate.py

\{ \defgroup calib3d_fisheye Fisheye camera model

Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X) The coordinate vector of P in the camera reference frame is:

\f[Xc = R X + T\f]

where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y and z the 3 coordinates of Xc:

\f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f]

The pinhole projection coordinates of P is [a; b] where

\f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f]

Fisheye distortion:

\f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]

The distorted point coordinates are [x'; y'] where

\f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f]

Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:

\f[u = f_x (x' + \alpha y') + c_x \\ v = f_y y' + c_y\f]

\defgroup calib3d_c C API

\} */ /** \addtogroup calib3d * \{

* type of the robust estimation algorithm */ /** enum cv:: */ public static final int /** least-median of squares algorithm */ LMEDS = 4, /** RANSAC algorithm */ RANSAC = 8, /** RHO algorithm */ RHO = 16; /** enum cv:: */ public static final int SOLVEPNP_ITERATIVE = 0, /** EPnP: Efficient Perspective-n-Point Camera Pose Estimation \cite lepetit2009epnp */ SOLVEPNP_EPNP = 1, /** Complete Solution Classification for the Perspective-Three-Point Problem \cite gao2003complete */ SOLVEPNP_P3P = 2, /** A Direct Least-Squares (DLS) Method for PnP \cite hesch2011direct */ SOLVEPNP_DLS = 3, /** Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation \cite penate2013exhaustive */ SOLVEPNP_UPNP = 4, /** An Efficient Algebraic Solution to the Perspective-Three-Point Problem \cite Ke17 */ SOLVEPNP_AP3P = 5, /** Used for count */ SOLVEPNP_MAX_COUNT = 6; /** enum cv:: */ public static final int CALIB_CB_ADAPTIVE_THRESH = 1, CALIB_CB_NORMALIZE_IMAGE = 2, CALIB_CB_FILTER_QUADS = 4, CALIB_CB_FAST_CHECK = 8, CALIB_CB_EXHAUSTIVE = 16, CALIB_CB_ACCURACY = 32; /** enum cv:: */ public static final int CALIB_CB_SYMMETRIC_GRID = 1, CALIB_CB_ASYMMETRIC_GRID = 2, CALIB_CB_CLUSTERING = 4; /** enum cv:: */ public static final int CALIB_NINTRINSIC = 18, CALIB_USE_INTRINSIC_GUESS = 0x00001, CALIB_FIX_ASPECT_RATIO = 0x00002, CALIB_FIX_PRINCIPAL_POINT = 0x00004, CALIB_ZERO_TANGENT_DIST = 0x00008, CALIB_FIX_FOCAL_LENGTH = 0x00010, CALIB_FIX_K1 = 0x00020, CALIB_FIX_K2 = 0x00040, CALIB_FIX_K3 = 0x00080, CALIB_FIX_K4 = 0x00800, CALIB_FIX_K5 = 0x01000, CALIB_FIX_K6 = 0x02000, CALIB_RATIONAL_MODEL = 0x04000, CALIB_THIN_PRISM_MODEL = 0x08000, CALIB_FIX_S1_S2_S3_S4 = 0x10000, CALIB_TILTED_MODEL = 0x40000, CALIB_FIX_TAUX_TAUY = 0x80000, /** use QR instead of SVD decomposition for solving. Faster but potentially less precise */ CALIB_USE_QR = 0x100000, CALIB_FIX_TANGENT_DIST = 0x200000, // only for stereo CALIB_FIX_INTRINSIC = 0x00100, CALIB_SAME_FOCAL_LENGTH = 0x00200, // for stereo rectification CALIB_ZERO_DISPARITY = 0x00400, /** use LU instead of SVD decomposition for solving. much faster but potentially less precise */ CALIB_USE_LU = (1 << 17), /** for stereoCalibrate */ CALIB_USE_EXTRINSIC_GUESS = (1 << 22); /** the algorithm for finding fundamental matrix */ /** enum cv:: */ public static final int /** 7-point algorithm */ FM_7POINT = 1, /** 8-point algorithm */ FM_8POINT = 2, /** least-median algorithm. 7-point algorithm is used. */ FM_LMEDS = 4, /** RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used. */ FM_RANSAC = 8; /** \brief Converts a rotation matrix to a rotation vector or vice versa.

@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3). @param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively. @param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial derivatives of the output array components with respect to the input array components.

\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos{\theta} I + (1- \cos{\theta} ) r r^T + \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]

Inverse transformation can be also done easily, since

\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]

A rotation vector is a convenient and most compact representation of a rotation matrix (since any rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP . */ @Namespace("cv") public static native void Rodrigues( @ByVal Mat src, @ByVal Mat dst, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat jacobian ); @Namespace("cv") public static native void Rodrigues( @ByVal Mat src, @ByVal Mat dst ); @Namespace("cv") public static native void Rodrigues( @ByVal UMat src, @ByVal UMat dst, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat jacobian ); @Namespace("cv") public static native void Rodrigues( @ByVal UMat src, @ByVal UMat dst ); @Namespace("cv") public static native void Rodrigues( @ByVal GpuMat src, @ByVal GpuMat dst, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat jacobian ); @Namespace("cv") public static native void Rodrigues( @ByVal GpuMat src, @ByVal GpuMat dst ); /** \example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp An example program about pose estimation from coplanar points

Check \ref tutorial_homography "the corresponding tutorial" for more details */ /** Levenberg-Marquardt solver. Starting with the specified vector of parameters it optimizes the target vector criteria "err" (finds local minima of each target vector component absolute value).

When needed, it calls user-provided callback. */ @Namespace("cv") public static class LMSolver extends Algorithm { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ public LMSolver(Pointer p) { super(p); } public static class Callback extends Pointer { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ public Callback(Pointer p) { super(p); } /** computes error and Jacobian for the specified vector of parameters

@param param the current vector of parameters @param err output vector of errors: err_i = actual_f_i - ideal_f_i @param J output Jacobian: J_ij = d(err_i)/d(param_j)

when J=noArray(), it means that it does not need to be computed. Dimensionality of error vector and param vector can be different. The callback should explicitly allocate (with "create" method) each output array (unless it's noArray()). */ public native @Cast("bool") boolean compute(@ByVal Mat param, @ByVal Mat err, @ByVal Mat J); public native @Cast("bool") boolean compute(@ByVal UMat param, @ByVal UMat err, @ByVal UMat J); public native @Cast("bool") boolean compute(@ByVal GpuMat param, @ByVal GpuMat err, @ByVal GpuMat J); } /** Runs Levenberg-Marquardt algorithm using the passed vector of parameters as the start point. The final vector of parameters (whether the algorithm converged or not) is stored at the same vector. The method returns the number of iterations used. If it's equal to the previously specified maxIters, there is a big chance the algorithm did not converge.

@param param initial/final vector of parameters.

Note that the dimensionality of parameter space is defined by the size of param vector, and the dimensionality of optimized criteria is defined by the size of err vector computed by the callback. */ public native int run(@ByVal Mat param); public native int run(@ByVal UMat param); public native int run(@ByVal GpuMat param); /** Sets the maximum number of iterations @param maxIters the number of iterations */ public native void setMaxIters(int maxIters); /** Retrieves the current maximum number of iterations */ public native int getMaxIters(); /** Creates Levenberg-Marquard solver

@param cb callback @param maxIters maximum number of iterations that can be further modified using setMaxIters() method. */ public static native @Ptr LMSolver create(@Ptr Callback cb, int maxIters); } /** \brief Finds a perspective transformation between two planes.

@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2 or vector\ . @param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or a vector\ . @param method Method used to compute a homography matrix. The following methods are possible: - **0** - a regular method using all the points, i.e., the least squares method - **RANSAC** - RANSAC-based robust method - **LMEDS** - Least-Median robust method - **RHO** - PROSAC-based robust method @param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier (used in the RANSAC and RHO methods only). That is, if \f[\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2 > \texttt{ransacReprojThreshold}\f] then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels, it usually makes sense to set this parameter somewhere in the range of 1 to 10. @param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input mask values are ignored. @param maxIters The maximum number of RANSAC iterations. @param confidence Confidence level, between 0 and 1.

The function finds and returns the perspective transformation \f$H\f$ between the source and the destination planes:

\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f]

so that the back-projection error

\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]

is minimized. If the parameter method is set to the default value 0, the function uses all the point pairs to compute an initial homography estimate with a simple least-squares scheme.

However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective transformation (that is, there are some outliers), this initial estimate will be poor. In this case, you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the computed homography (which is the number of inliers for RANSAC or the least median re-projection error for LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and the mask of inliers/outliers.

Regardless of the method, robust or not, the computed homography matrix is refined further (using inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the re-projection error even more.

The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to distinguish inliers from outliers. The method LMeDS does not need any threshold but it works correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the noise is rather small, use the default method (method=0).

The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an \f$H\f$ matrix cannot be estimated, an empty one will be returned.

\sa getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective, perspectiveTransform */ @Namespace("cv") public static native @ByVal Mat findHomography( @ByVal Mat srcPoints, @ByVal Mat dstPoints, int method/*=0*/, double ransacReprojThreshold/*=3*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat mask, int maxIters/*=2000*/, double confidence/*=0.995*/); @Namespace("cv") public static native @ByVal Mat findHomography( @ByVal Mat srcPoints, @ByVal Mat dstPoints); @Namespace("cv") public static native @ByVal Mat findHomography( @ByVal UMat srcPoints, @ByVal UMat dstPoints, int method/*=0*/, double ransacReprojThreshold/*=3*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat mask, int maxIters/*=2000*/, double confidence/*=0.995*/); @Namespace("cv") public static native @ByVal Mat findHomography( @ByVal UMat srcPoints, @ByVal UMat dstPoints); @Namespace("cv") public static native @ByVal Mat findHomography( @ByVal GpuMat srcPoints, @ByVal GpuMat dstPoints, int method/*=0*/, double ransacReprojThreshold/*=3*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat mask, int maxIters/*=2000*/, double confidence/*=0.995*/); @Namespace("cv") public static native @ByVal Mat findHomography( @ByVal GpuMat srcPoints, @ByVal GpuMat dstPoints); /** \overload */ @Namespace("cv") public static native @ByVal Mat findHomography( @ByVal Mat srcPoints, @ByVal Mat dstPoints, @ByVal Mat mask, int method/*=0*/, double ransacReprojThreshold/*=3*/ ); @Namespace("cv") public static native @ByVal Mat findHomography( @ByVal Mat srcPoints, @ByVal Mat dstPoints, @ByVal Mat mask ); @Namespace("cv") public static native @ByVal Mat findHomography( @ByVal UMat srcPoints, @ByVal UMat dstPoints, @ByVal UMat mask, int method/*=0*/, double ransacReprojThreshold/*=3*/ ); @Namespace("cv") public static native @ByVal Mat findHomography( @ByVal UMat srcPoints, @ByVal UMat dstPoints, @ByVal UMat mask ); @Namespace("cv") public static native @ByVal Mat findHomography( @ByVal GpuMat srcPoints, @ByVal GpuMat dstPoints, @ByVal GpuMat mask, int method/*=0*/, double ransacReprojThreshold/*=3*/ ); @Namespace("cv") public static native @ByVal Mat findHomography( @ByVal GpuMat srcPoints, @ByVal GpuMat dstPoints, @ByVal GpuMat mask ); /** \brief Computes an RQ decomposition of 3x3 matrices.

@param src 3x3 input matrix. @param mtxR Output 3x3 upper-triangular matrix. @param mtxQ Output 3x3 orthogonal matrix. @param Qx Optional output 3x3 rotation matrix around x-axis. @param Qy Optional output 3x3 rotation matrix around y-axis. @param Qz Optional output 3x3 rotation matrix around z-axis.

The function computes a RQ decomposition using the given rotations. This function is used in decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera and a rotation matrix.

It optionally returns three rotation matrices, one for each axis, and the three Euler angles in degrees (as the return value) that could be used in OpenGL. Note, there is always more than one sequence of rotations about the three principal axes that results in the same orientation of an object, e.g. see \cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angles are only one of the possible solutions. */ @Namespace("cv") public static native @ByVal Point3d RQDecomp3x3( @ByVal Mat src, @ByVal Mat mtxR, @ByVal Mat mtxQ, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat Qx, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat Qy, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat Qz); @Namespace("cv") public static native @ByVal Point3d RQDecomp3x3( @ByVal Mat src, @ByVal Mat mtxR, @ByVal Mat mtxQ); @Namespace("cv") public static native @ByVal Point3d RQDecomp3x3( @ByVal UMat src, @ByVal UMat mtxR, @ByVal UMat mtxQ, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat Qx, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat Qy, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat Qz); @Namespace("cv") public static native @ByVal Point3d RQDecomp3x3( @ByVal UMat src, @ByVal UMat mtxR, @ByVal UMat mtxQ); @Namespace("cv") public static native @ByVal Point3d RQDecomp3x3( @ByVal GpuMat src, @ByVal GpuMat mtxR, @ByVal GpuMat mtxQ, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat Qx, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat Qy, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat Qz); @Namespace("cv") public static native @ByVal Point3d RQDecomp3x3( @ByVal GpuMat src, @ByVal GpuMat mtxR, @ByVal GpuMat mtxQ); /** \brief Decomposes a projection matrix into a rotation matrix and a camera matrix.

@param projMatrix 3x4 input projection matrix P. @param cameraMatrix Output 3x3 camera matrix K. @param rotMatrix Output 3x3 external rotation matrix R. @param transVect Output 4x1 translation vector T. @param rotMatrixX Optional 3x3 rotation matrix around x-axis. @param rotMatrixY Optional 3x3 rotation matrix around y-axis. @param rotMatrixZ Optional 3x3 rotation matrix around z-axis. @param eulerAngles Optional three-element vector containing three Euler angles of rotation in degrees.

The function computes a decomposition of a projection matrix into a calibration and a rotation matrix and the position of a camera.

It optionally returns three rotation matrices, one for each axis, and three Euler angles that could be used in OpenGL. Note, there is always more than one sequence of rotations about the three principal axes that results in the same orientation of an object, e.g. see \cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.

The function is based on RQDecomp3x3 . */ @Namespace("cv") public static native void decomposeProjectionMatrix( @ByVal Mat projMatrix, @ByVal Mat cameraMatrix, @ByVal Mat rotMatrix, @ByVal Mat transVect, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat rotMatrixX, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat rotMatrixY, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat rotMatrixZ, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat eulerAngles ); @Namespace("cv") public static native void decomposeProjectionMatrix( @ByVal Mat projMatrix, @ByVal Mat cameraMatrix, @ByVal Mat rotMatrix, @ByVal Mat transVect ); @Namespace("cv") public static native void decomposeProjectionMatrix( @ByVal UMat projMatrix, @ByVal UMat cameraMatrix, @ByVal UMat rotMatrix, @ByVal UMat transVect, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat rotMatrixX, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat rotMatrixY, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat rotMatrixZ, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat eulerAngles ); @Namespace("cv") public static native void decomposeProjectionMatrix( @ByVal UMat projMatrix, @ByVal UMat cameraMatrix, @ByVal UMat rotMatrix, @ByVal UMat transVect ); @Namespace("cv") public static native void decomposeProjectionMatrix( @ByVal GpuMat projMatrix, @ByVal GpuMat cameraMatrix, @ByVal GpuMat rotMatrix, @ByVal GpuMat transVect, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat rotMatrixX, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat rotMatrixY, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat rotMatrixZ, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat eulerAngles ); @Namespace("cv") public static native void decomposeProjectionMatrix( @ByVal GpuMat projMatrix, @ByVal GpuMat cameraMatrix, @ByVal GpuMat rotMatrix, @ByVal GpuMat transVect ); /** \brief Computes partial derivatives of the matrix product for each multiplied matrix.

@param A First multiplied matrix. @param B Second multiplied matrix. @param dABdA First output derivative matrix d(A\*B)/dA of size \f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ . @param dABdB Second output derivative matrix d(A\*B)/dB of size \f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .

The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to the elements of each of the two input matrices. The function is used to compute the Jacobian matrices in stereoCalibrate but can also be used in any other similar optimization function. */ @Namespace("cv") public static native void matMulDeriv( @ByVal Mat A, @ByVal Mat B, @ByVal Mat dABdA, @ByVal Mat dABdB ); @Namespace("cv") public static native void matMulDeriv( @ByVal UMat A, @ByVal UMat B, @ByVal UMat dABdA, @ByVal UMat dABdB ); @Namespace("cv") public static native void matMulDeriv( @ByVal GpuMat A, @ByVal GpuMat B, @ByVal GpuMat dABdA, @ByVal GpuMat dABdB ); /** \brief Combines two rotation-and-shift transformations.

@param rvec1 First rotation vector. @param tvec1 First translation vector. @param rvec2 Second rotation vector. @param tvec2 Second translation vector. @param rvec3 Output rotation vector of the superposition. @param tvec3 Output translation vector of the superposition. @param dr3dr1 @param dr3dt1 @param dr3dr2 @param dr3dt2 @param dt3dr1 @param dt3dt1 @param dt3dr2 @param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and tvec2, respectively.

The functions compute:

\f[\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\f]

where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and \f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details.

Also, the functions can compute the derivatives of the output vectors with regards to the input vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a function that contains a matrix multiplication. */ @Namespace("cv") public static native void composeRT( @ByVal Mat rvec1, @ByVal Mat tvec1, @ByVal Mat rvec2, @ByVal Mat tvec2, @ByVal Mat rvec3, @ByVal Mat tvec3, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat dr3dr1, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat dr3dt1, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat dr3dr2, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat dr3dt2, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat dt3dr1, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat dt3dt1, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat dt3dr2, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat dt3dt2 ); @Namespace("cv") public static native void composeRT( @ByVal Mat rvec1, @ByVal Mat tvec1, @ByVal Mat rvec2, @ByVal Mat tvec2, @ByVal Mat rvec3, @ByVal Mat tvec3 ); @Namespace("cv") public static native void composeRT( @ByVal UMat rvec1, @ByVal UMat tvec1, @ByVal UMat rvec2, @ByVal UMat tvec2, @ByVal UMat rvec3, @ByVal UMat tvec3, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat dr3dr1, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat dr3dt1, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat dr3dr2, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat dr3dt2, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat dt3dr1, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat dt3dt1, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat dt3dr2, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat dt3dt2 ); @Namespace("cv") public static native void composeRT( @ByVal UMat rvec1, @ByVal UMat tvec1, @ByVal UMat rvec2, @ByVal UMat tvec2, @ByVal UMat rvec3, @ByVal UMat tvec3 ); @Namespace("cv") public static native void composeRT( @ByVal GpuMat rvec1, @ByVal GpuMat tvec1, @ByVal GpuMat rvec2, @ByVal GpuMat tvec2, @ByVal GpuMat rvec3, @ByVal GpuMat tvec3, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat dr3dr1, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat dr3dt1, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat dr3dr2, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat dr3dt2, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat dt3dr1, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat dt3dt1, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat dt3dr2, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat dt3dt2 ); @Namespace("cv") public static native void composeRT( @ByVal GpuMat rvec1, @ByVal GpuMat tvec1, @ByVal GpuMat rvec2, @ByVal GpuMat tvec2, @ByVal GpuMat rvec3, @ByVal GpuMat tvec3 ); /** \brief Projects 3D points to an image plane.

@param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or vector\ ), where N is the number of points in the view. @param rvec Rotation vector. See Rodrigues for details. @param tvec Translation vector. @param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ . @param distCoeffs Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed. @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or vector\ . @param jacobian Optional output 2Nx(10+\) jacobian matrix of derivatives of image points with respect to components of the rotation vector, translation vector, focal lengths, coordinates of the principal point and the distortion coefficients. In the old interface different components of the jacobian are returned via different output parameters. @param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian matrix.

The function computes projections of 3D points to the image plane given intrinsic and extrinsic camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of image points coordinates (as functions of all the input parameters) with respect to the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a re-projection error given the current intrinsic and extrinsic parameters.

\note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by passing zero distortion coefficients, you can get various useful partial cases of the function. This means that you can compute the distorted coordinates for a sparse set of points or apply a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup. */ @Namespace("cv") public static native void projectPoints( @ByVal Mat objectPoints, @ByVal Mat rvec, @ByVal Mat tvec, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Mat imagePoints, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat jacobian, double aspectRatio/*=0*/ ); @Namespace("cv") public static native void projectPoints( @ByVal Mat objectPoints, @ByVal Mat rvec, @ByVal Mat tvec, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Mat imagePoints ); @Namespace("cv") public static native void projectPoints( @ByVal UMat objectPoints, @ByVal UMat rvec, @ByVal UMat tvec, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal UMat imagePoints, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat jacobian, double aspectRatio/*=0*/ ); @Namespace("cv") public static native void projectPoints( @ByVal UMat objectPoints, @ByVal UMat rvec, @ByVal UMat tvec, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal UMat imagePoints ); @Namespace("cv") public static native void projectPoints( @ByVal GpuMat objectPoints, @ByVal GpuMat rvec, @ByVal GpuMat tvec, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal GpuMat imagePoints, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat jacobian, double aspectRatio/*=0*/ ); @Namespace("cv") public static native void projectPoints( @ByVal GpuMat objectPoints, @ByVal GpuMat rvec, @ByVal GpuMat tvec, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal GpuMat imagePoints ); /** \example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp An example program about homography from the camera displacement

Check \ref tutorial_homography "the corresponding tutorial" for more details */ /** \brief Finds an object pose from 3D-2D point correspondences.

@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel, where N is the number of points. vector\ can be also passed here. @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, where N is the number of points. vector\ can be also passed here. @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ . @param distCoeffs Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. @param rvec Output rotation vector (see \ref Rodrigues ) that, together with tvec , brings points from the model coordinate system to the camera coordinate system. @param tvec Output translation vector. @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses the provided rvec and tvec values as initial approximations of the rotation and translation vectors, respectively, and further optimizes them. @param flags Method for solving a PnP problem: - **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In this case the function finds such a pose that minimizes reprojection error, that is the sum of squared distances between the observed projections imagePoints and the projected (using projectPoints ) objectPoints . - **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang "Complete Solution Classification for the Perspective-Three-Point Problem" (\cite gao2003complete). In this case the function requires exactly four object and image points. - **SOLVEPNP_AP3P** Method is based on the paper of T. Ke, S. Roumeliotis "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (\cite Ke17). In this case the function requires exactly four object and image points. - **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (\cite lepetit2009epnp). - **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis. "A Direct Least-Squares (DLS) Method for PnP" (\cite hesch2011direct). - **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto, F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation" (\cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$ assuming that both have the same value. Then the cameraMatrix is updated with the estimated focal length. - **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis. "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (\cite Ke17). In this case the function requires exactly four object and image points.

The function estimates the object pose given a set of object points, their corresponding image projections, as well as the camera matrix and the distortion coefficients, see the figure below (more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward and the Z-axis forward).

![](pnp.jpg)

Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$ using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$:

\f[ \begin{align*} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} &= \bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{M}_w \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix} \\ \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} &= \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix} \end{align*} \f]

The estimated pose is thus the rotation ({@code rvec}) and the translation ({@code tvec}) vectors that allow to transform a 3D point expressed in the world frame into the camera frame:

\f[ \begin{align*} \begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix} &= \hspace{0.2em} ^{c}\bf{M}_w \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix} \\ \begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix} &= \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix} \end{align*} \f]

\note - An example of how to use solvePnP for planar augmented reality can be found at opencv_source_code/samples/python/plane_ar.py - If you are using Python: - Numpy array slices won't work as input because solvePnP requires contiguous arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of modules/calib3d/src/solvepnp.cpp version 2.4.9) - The P3P algorithm requires image points to be in an array of shape (N,1,2) due to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9) which requires 2-channel information. - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints = np.ascontiguousarray(D[:,:2]).reshape((N,1,2)) - The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are unstable and sometimes give completely wrong results. If you pass one of these two flags, **SOLVEPNP_EPNP** method will be used instead. - The minimum number of points is 4 in the general case. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P** methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error). - With **SOLVEPNP_ITERATIVE** method and {@code useExtrinsicGuess=true}, the minimum number of points is 3 (3 points are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the global solution to converge. */ @Namespace("cv") public static native @Cast("bool") boolean solvePnP( @ByVal Mat objectPoints, @ByVal Mat imagePoints, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Mat rvec, @ByVal Mat tvec, @Cast("bool") boolean useExtrinsicGuess/*=false*/, int flags/*=cv::SOLVEPNP_ITERATIVE*/ ); @Namespace("cv") public static native @Cast("bool") boolean solvePnP( @ByVal Mat objectPoints, @ByVal Mat imagePoints, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Mat rvec, @ByVal Mat tvec ); @Namespace("cv") public static native @Cast("bool") boolean solvePnP( @ByVal UMat objectPoints, @ByVal UMat imagePoints, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal UMat rvec, @ByVal UMat tvec, @Cast("bool") boolean useExtrinsicGuess/*=false*/, int flags/*=cv::SOLVEPNP_ITERATIVE*/ ); @Namespace("cv") public static native @Cast("bool") boolean solvePnP( @ByVal UMat objectPoints, @ByVal UMat imagePoints, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal UMat rvec, @ByVal UMat tvec ); @Namespace("cv") public static native @Cast("bool") boolean solvePnP( @ByVal GpuMat objectPoints, @ByVal GpuMat imagePoints, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal GpuMat rvec, @ByVal GpuMat tvec, @Cast("bool") boolean useExtrinsicGuess/*=false*/, int flags/*=cv::SOLVEPNP_ITERATIVE*/ ); @Namespace("cv") public static native @Cast("bool") boolean solvePnP( @ByVal GpuMat objectPoints, @ByVal GpuMat imagePoints, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal GpuMat rvec, @ByVal GpuMat tvec ); /** \brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.

@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel, where N is the number of points. vector\ can be also passed here. @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, where N is the number of points. vector\ can be also passed here. @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ . @param distCoeffs Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. @param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from the model coordinate system to the camera coordinate system. @param tvec Output translation vector. @param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses the provided rvec and tvec values as initial approximations of the rotation and translation vectors, respectively, and further optimizes them. @param iterationsCount Number of iterations. @param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value is the maximum allowed distance between the observed and computed point projections to consider it an inlier. @param confidence The probability that the algorithm produces a useful result. @param inliers Output vector that contains indices of inliers in objectPoints and imagePoints . @param flags Method for solving a PnP problem (see solvePnP ).

The function estimates an object pose given a set of object points, their corresponding image projections, as well as the camera matrix and the distortion coefficients. This function finds such a pose that minimizes reprojection error, that is, the sum of squared distances between the observed projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC makes the function resistant to outliers.

\note - An example of how to use solvePNPRansac for object detection can be found at opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/ - The default method used to estimate the camera pose for the Minimal Sample Sets step is #SOLVEPNP_EPNP. Exceptions are: - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used. - if the number of input points is equal to 4, #SOLVEPNP_P3P is used. - The method used to estimate the camera pose using all the inliers is defined by the flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case, the method #SOLVEPNP_EPNP will be used instead. */ @Namespace("cv") public static native @Cast("bool") boolean solvePnPRansac( @ByVal Mat objectPoints, @ByVal Mat imagePoints, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Mat rvec, @ByVal Mat tvec, @Cast("bool") boolean useExtrinsicGuess/*=false*/, int iterationsCount/*=100*/, float reprojectionError/*=8.0*/, double confidence/*=0.99*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat inliers, int flags/*=cv::SOLVEPNP_ITERATIVE*/ ); @Namespace("cv") public static native @Cast("bool") boolean solvePnPRansac( @ByVal Mat objectPoints, @ByVal Mat imagePoints, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Mat rvec, @ByVal Mat tvec ); @Namespace("cv") public static native @Cast("bool") boolean solvePnPRansac( @ByVal UMat objectPoints, @ByVal UMat imagePoints, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal UMat rvec, @ByVal UMat tvec, @Cast("bool") boolean useExtrinsicGuess/*=false*/, int iterationsCount/*=100*/, float reprojectionError/*=8.0*/, double confidence/*=0.99*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat inliers, int flags/*=cv::SOLVEPNP_ITERATIVE*/ ); @Namespace("cv") public static native @Cast("bool") boolean solvePnPRansac( @ByVal UMat objectPoints, @ByVal UMat imagePoints, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal UMat rvec, @ByVal UMat tvec ); @Namespace("cv") public static native @Cast("bool") boolean solvePnPRansac( @ByVal GpuMat objectPoints, @ByVal GpuMat imagePoints, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal GpuMat rvec, @ByVal GpuMat tvec, @Cast("bool") boolean useExtrinsicGuess/*=false*/, int iterationsCount/*=100*/, float reprojectionError/*=8.0*/, double confidence/*=0.99*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat inliers, int flags/*=cv::SOLVEPNP_ITERATIVE*/ ); @Namespace("cv") public static native @Cast("bool") boolean solvePnPRansac( @ByVal GpuMat objectPoints, @ByVal GpuMat imagePoints, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal GpuMat rvec, @ByVal GpuMat tvec ); /** \brief Finds an object pose from 3 3D-2D point correspondences.

@param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or 1x3/3x1 3-channel. vector\ can be also passed here. @param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel. vector\ can be also passed here. @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ . @param distCoeffs Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. @param rvecs Output rotation vectors (see Rodrigues ) that, together with tvecs , brings points from the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions. @param tvecs Output translation vectors. @param flags Method for solving a P3P problem: - **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang "Complete Solution Classification for the Perspective-Three-Point Problem" (\cite gao2003complete). - **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis. "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (\cite Ke17).

The function estimates the object pose given 3 object points, their corresponding image projections, as well as the camera matrix and the distortion coefficients. */ @Namespace("cv") public static native int solveP3P( @ByVal Mat objectPoints, @ByVal Mat imagePoints, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal MatVector rvecs, @ByVal MatVector tvecs, int flags ); @Namespace("cv") public static native int solveP3P( @ByVal Mat objectPoints, @ByVal Mat imagePoints, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal UMatVector rvecs, @ByVal UMatVector tvecs, int flags ); @Namespace("cv") public static native int solveP3P( @ByVal Mat objectPoints, @ByVal Mat imagePoints, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal GpuMatVector rvecs, @ByVal GpuMatVector tvecs, int flags ); @Namespace("cv") public static native int solveP3P( @ByVal UMat objectPoints, @ByVal UMat imagePoints, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal MatVector rvecs, @ByVal MatVector tvecs, int flags ); @Namespace("cv") public static native int solveP3P( @ByVal UMat objectPoints, @ByVal UMat imagePoints, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal UMatVector rvecs, @ByVal UMatVector tvecs, int flags ); @Namespace("cv") public static native int solveP3P( @ByVal UMat objectPoints, @ByVal UMat imagePoints, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal GpuMatVector rvecs, @ByVal GpuMatVector tvecs, int flags ); @Namespace("cv") public static native int solveP3P( @ByVal GpuMat objectPoints, @ByVal GpuMat imagePoints, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal MatVector rvecs, @ByVal MatVector tvecs, int flags ); @Namespace("cv") public static native int solveP3P( @ByVal GpuMat objectPoints, @ByVal GpuMat imagePoints, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal UMatVector rvecs, @ByVal UMatVector tvecs, int flags ); @Namespace("cv") public static native int solveP3P( @ByVal GpuMat objectPoints, @ByVal GpuMat imagePoints, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal GpuMatVector rvecs, @ByVal GpuMatVector tvecs, int flags ); /** \brief Finds an initial camera matrix from 3D-2D point correspondences.

@param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern coordinate space. In the old interface all the per-view vectors are concatenated. See calibrateCamera for details. @param imagePoints Vector of vectors of the projections of the calibration pattern points. In the old interface all the per-view vectors are concatenated. @param imageSize Image size in pixels used to initialize the principal point. @param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently. Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ .

The function estimates and returns an initial camera matrix for the camera calibration process. Currently, the function only supports planar calibration patterns, which are patterns where each object point has z-coordinate =0. */ @Namespace("cv") public static native @ByVal Mat initCameraMatrix2D( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints, @ByVal Size imageSize, double aspectRatio/*=1.0*/ ); @Namespace("cv") public static native @ByVal Mat initCameraMatrix2D( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints, @ByVal Size imageSize ); /** \brief Finds the positions of internal corners of the chessboard.

@param image Source chessboard view. It must be an 8-bit grayscale or color image. @param patternSize Number of inner corners per a chessboard row and column ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ). @param corners Output array of detected corners. @param flags Various operation flags that can be zero or a combination of the following values: - **CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black and white, rather than a fixed threshold level (computed from the average image brightness). - **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before applying fixed or adaptive thresholding. - **CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter, square-like shape) to filter out false quads extracted at the contour retrieval stage. - **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners, and shortcut the call if none is found. This can drastically speed up the call in the degenerate condition when no chessboard is observed.

The function attempts to determine whether the input image is a view of the chessboard pattern and locate the internal chessboard corners. The function returns a non-zero value if all of the corners are found and they are placed in a certain order (row by row, left to right in every row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example, a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black squares touch each other. The detected coordinates are approximate, and to determine their positions more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with different parameters if returned coordinates are not accurate enough.

Sample usage of detecting and drawing chessboard corners: :

{@code
    Size patternsize(8,6); //interior number of corners
    Mat gray = ....; //source image
    vector corners; //this will be filled by the detected corners

    //CALIB_CB_FAST_CHECK saves a lot of time on images
    //that do not contain any chessboard corners
    bool patternfound = findChessboardCorners(gray, patternsize, corners,
            CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
            + CALIB_CB_FAST_CHECK);

    if(patternfound)
      cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
        TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));

    drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
}
\note The function requires white space (like a square-thick border, the wider the better) around the board to make the detection more robust in various environments. Otherwise, if there is no border and the background is dark, the outer black squares cannot be segmented properly and so the square grouping and ordering algorithm fails. */ @Namespace("cv") public static native @Cast("bool") boolean findChessboardCorners( @ByVal Mat image, @ByVal Size patternSize, @ByVal Mat corners, int flags/*=cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_NORMALIZE_IMAGE*/ ); @Namespace("cv") public static native @Cast("bool") boolean findChessboardCorners( @ByVal Mat image, @ByVal Size patternSize, @ByVal Mat corners ); @Namespace("cv") public static native @Cast("bool") boolean findChessboardCorners( @ByVal UMat image, @ByVal Size patternSize, @ByVal UMat corners, int flags/*=cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_NORMALIZE_IMAGE*/ ); @Namespace("cv") public static native @Cast("bool") boolean findChessboardCorners( @ByVal UMat image, @ByVal Size patternSize, @ByVal UMat corners ); @Namespace("cv") public static native @Cast("bool") boolean findChessboardCorners( @ByVal GpuMat image, @ByVal Size patternSize, @ByVal GpuMat corners, int flags/*=cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_NORMALIZE_IMAGE*/ ); @Namespace("cv") public static native @Cast("bool") boolean findChessboardCorners( @ByVal GpuMat image, @ByVal Size patternSize, @ByVal GpuMat corners ); /* Checks whether the image contains chessboard of the specific size or not. If yes, nonzero value is returned. */ @Namespace("cv") public static native @Cast("bool") boolean checkChessboard(@ByVal Mat img, @ByVal Size size); @Namespace("cv") public static native @Cast("bool") boolean checkChessboard(@ByVal UMat img, @ByVal Size size); @Namespace("cv") public static native @Cast("bool") boolean checkChessboard(@ByVal GpuMat img, @ByVal Size size); /** \brief Finds the positions of internal corners of the chessboard using a sector based approach.

@param image Source chessboard view. It must be an 8-bit grayscale or color image. @param patternSize Number of inner corners per a chessboard row and column ( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ). @param corners Output array of detected corners. @param flags Various operation flags that can be zero or a combination of the following values: - **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before detection. - **CALIB_CB_EXHAUSTIVE ** Run an exhaustive search to improve detection rate. - **CALIB_CB_ACCURACY ** Up sample input image to improve sub-pixel accuracy due to aliasing effects. This should be used if an accurate camera calibration is required.

The function is analog to findchessboardCorners but uses a localized radon transformation approximated by box filters being more robust to all sort of noise, faster on larger images and is able to directly return the sub-pixel position of the internal chessboard corners. The Method is based on the paper \cite duda2018 "Accurate Detection and Localization of Checkerboard Corners for Calibration" demonstrating that the returned sub-pixel positions are more accurate than the one returned by cornerSubPix allowing a precise camera calibration for demanding applications.

\note The function requires a white boarder with roughly the same width as one of the checkerboard fields around the whole board to improve the detection in various environments. In addition, because of the localized radon transformation it is beneficial to use round corners for the field corners which are located on the outside of the board. The following figure illustrates a sample checkerboard optimized for the detection. However, any other checkerboard can be used as well. ![Checkerboard](pics/checkerboard_radon.png) */ @Namespace("cv") public static native @Cast("bool") boolean findChessboardCornersSB(@ByVal Mat image,@ByVal Size patternSize, @ByVal Mat corners,int flags/*=0*/); @Namespace("cv") public static native @Cast("bool") boolean findChessboardCornersSB(@ByVal Mat image,@ByVal Size patternSize, @ByVal Mat corners); @Namespace("cv") public static native @Cast("bool") boolean findChessboardCornersSB(@ByVal UMat image,@ByVal Size patternSize, @ByVal UMat corners,int flags/*=0*/); @Namespace("cv") public static native @Cast("bool") boolean findChessboardCornersSB(@ByVal UMat image,@ByVal Size patternSize, @ByVal UMat corners); @Namespace("cv") public static native @Cast("bool") boolean findChessboardCornersSB(@ByVal GpuMat image,@ByVal Size patternSize, @ByVal GpuMat corners,int flags/*=0*/); @Namespace("cv") public static native @Cast("bool") boolean findChessboardCornersSB(@ByVal GpuMat image,@ByVal Size patternSize, @ByVal GpuMat corners); /** finds subpixel-accurate positions of the chessboard corners */ @Namespace("cv") public static native @Cast("bool") boolean find4QuadCornerSubpix( @ByVal Mat img, @ByVal Mat corners, @ByVal Size region_size ); @Namespace("cv") public static native @Cast("bool") boolean find4QuadCornerSubpix( @ByVal UMat img, @ByVal UMat corners, @ByVal Size region_size ); @Namespace("cv") public static native @Cast("bool") boolean find4QuadCornerSubpix( @ByVal GpuMat img, @ByVal GpuMat corners, @ByVal Size region_size ); /** \brief Renders the detected chessboard corners.

@param image Destination image. It must be an 8-bit color image. @param patternSize Number of inner corners per a chessboard row and column (patternSize = cv::Size(points_per_row,points_per_column)). @param corners Array of detected corners, the output of findChessboardCorners. @param patternWasFound Parameter indicating whether the complete board was found or not. The return value of findChessboardCorners should be passed here.

The function draws individual chessboard corners detected either as red circles if the board was not found, or as colored corners connected with lines if the board was found. */ @Namespace("cv") public static native void drawChessboardCorners( @ByVal Mat image, @ByVal Size patternSize, @ByVal Mat corners, @Cast("bool") boolean patternWasFound ); @Namespace("cv") public static native void drawChessboardCorners( @ByVal UMat image, @ByVal Size patternSize, @ByVal UMat corners, @Cast("bool") boolean patternWasFound ); @Namespace("cv") public static native void drawChessboardCorners( @ByVal GpuMat image, @ByVal Size patternSize, @ByVal GpuMat corners, @Cast("bool") boolean patternWasFound ); /** \brief Draw axes of the world/object coordinate system from pose estimation. \sa solvePnP

@param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered. @param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters. \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ @param distCoeffs Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed. @param rvec Rotation vector (see \ref Rodrigues ) that, together with tvec , brings points from the model coordinate system to the camera coordinate system. @param tvec Translation vector. @param length Length of the painted axes in the same unit than tvec (usually in meters). @param thickness Line thickness of the painted axes.

This function draws the axes of the world/object coordinate system w.r.t. to the camera frame. OX is drawn in red, OY in green and OZ in blue. */ @Namespace("cv") public static native void drawFrameAxes(@ByVal Mat image, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Mat rvec, @ByVal Mat tvec, float length, int thickness/*=3*/); @Namespace("cv") public static native void drawFrameAxes(@ByVal Mat image, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Mat rvec, @ByVal Mat tvec, float length); @Namespace("cv") public static native void drawFrameAxes(@ByVal UMat image, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal UMat rvec, @ByVal UMat tvec, float length, int thickness/*=3*/); @Namespace("cv") public static native void drawFrameAxes(@ByVal UMat image, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal UMat rvec, @ByVal UMat tvec, float length); @Namespace("cv") public static native void drawFrameAxes(@ByVal GpuMat image, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal GpuMat rvec, @ByVal GpuMat tvec, float length, int thickness/*=3*/); @Namespace("cv") public static native void drawFrameAxes(@ByVal GpuMat image, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal GpuMat rvec, @ByVal GpuMat tvec, float length); @Namespace("cv") @NoOffset public static class CirclesGridFinderParameters extends Pointer { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ public CirclesGridFinderParameters(Pointer p) { super(p); } /** Native array allocator. Access with {@link Pointer#position(long)}. */ public CirclesGridFinderParameters(long size) { super((Pointer)null); allocateArray(size); } private native void allocateArray(long size); @Override public CirclesGridFinderParameters position(long position) { return (CirclesGridFinderParameters)super.position(position); } public CirclesGridFinderParameters() { super((Pointer)null); allocate(); } private native void allocate(); public native @ByRef Size2f densityNeighborhoodSize(); public native CirclesGridFinderParameters densityNeighborhoodSize(Size2f densityNeighborhoodSize); public native float minDensity(); public native CirclesGridFinderParameters minDensity(float minDensity); public native int kmeansAttempts(); public native CirclesGridFinderParameters kmeansAttempts(int kmeansAttempts); public native int minDistanceToAddKeypoint(); public native CirclesGridFinderParameters minDistanceToAddKeypoint(int minDistanceToAddKeypoint); public native int keypointScale(); public native CirclesGridFinderParameters keypointScale(int keypointScale); public native float minGraphConfidence(); public native CirclesGridFinderParameters minGraphConfidence(float minGraphConfidence); public native float vertexGain(); public native CirclesGridFinderParameters vertexGain(float vertexGain); public native float vertexPenalty(); public native CirclesGridFinderParameters vertexPenalty(float vertexPenalty); public native float existingVertexGain(); public native CirclesGridFinderParameters existingVertexGain(float existingVertexGain); public native float edgeGain(); public native CirclesGridFinderParameters edgeGain(float edgeGain); public native float edgePenalty(); public native CirclesGridFinderParameters edgePenalty(float edgePenalty); public native float convexHullFactor(); public native CirclesGridFinderParameters convexHullFactor(float convexHullFactor); public native float minRNGEdgeSwitchDist(); public native CirclesGridFinderParameters minRNGEdgeSwitchDist(float minRNGEdgeSwitchDist); /** enum cv::CirclesGridFinderParameters::GridType */ public static final int SYMMETRIC_GRID = 0, ASYMMETRIC_GRID = 1; public native @Cast("cv::CirclesGridFinderParameters::GridType") int gridType(); public native CirclesGridFinderParameters gridType(int gridType); /** Distance between two adjacent points. Used by CALIB_CB_CLUSTERING. */ public native float squareSize(); public native CirclesGridFinderParameters squareSize(float squareSize); /** Max deviation from predicion. Used by CALIB_CB_CLUSTERING. */ public native float maxRectifiedDistance(); public native CirclesGridFinderParameters maxRectifiedDistance(float maxRectifiedDistance); } // #ifndef DISABLE_OPENCV_3_COMPATIBILITY // #endif /** \brief Finds centers in the grid of circles.

@param image grid view of input circles; it must be an 8-bit grayscale or color image. @param patternSize number of circles per row and column ( patternSize = Size(points_per_row, points_per_colum) ). @param centers output array of detected centers. @param flags various operation flags that can be one of the following values: - **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles. - **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles. - **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to perspective distortions but much more sensitive to background clutter. @param blobDetector feature detector that finds blobs like dark circles on light background. @param parameters struct for finding circles in a grid pattern.

The function attempts to determine whether the input image contains a grid of circles. If it is, the function locates centers of the circles. The function returns a non-zero value if all of the centers have been found and they have been placed in a certain order (row by row, left to right in every row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.

Sample usage of detecting and drawing the centers of circles: :

{@code
    Size patternsize(7,7); //number of centers
    Mat gray = ....; //source image
    vector centers; //this will be filled by the detected centers

    bool patternfound = findCirclesGrid(gray, patternsize, centers);

    drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
}
\note The function requires white space (like a square-thick border, the wider the better) around the board to make the detection more robust in various environments. */ @Namespace("cv") public static native @Cast("bool") boolean findCirclesGrid( @ByVal Mat image, @ByVal Size patternSize, @ByVal Mat centers, int flags, @Cast("cv::FeatureDetector*") @Ptr Feature2D blobDetector, @Const @ByRef CirclesGridFinderParameters parameters); @Namespace("cv") public static native @Cast("bool") boolean findCirclesGrid( @ByVal UMat image, @ByVal Size patternSize, @ByVal UMat centers, int flags, @Cast("cv::FeatureDetector*") @Ptr Feature2D blobDetector, @Const @ByRef CirclesGridFinderParameters parameters); @Namespace("cv") public static native @Cast("bool") boolean findCirclesGrid( @ByVal GpuMat image, @ByVal Size patternSize, @ByVal GpuMat centers, int flags, @Cast("cv::FeatureDetector*") @Ptr Feature2D blobDetector, @Const @ByRef CirclesGridFinderParameters parameters); /** \overload */ @Namespace("cv") public static native @Cast("bool") boolean findCirclesGrid( @ByVal Mat image, @ByVal Size patternSize, @ByVal Mat centers, int flags/*=cv::CALIB_CB_SYMMETRIC_GRID*/, @Cast("cv::FeatureDetector*") @Ptr Feature2D blobDetector/*=cv::SimpleBlobDetector::create()*/); @Namespace("cv") public static native @Cast("bool") boolean findCirclesGrid( @ByVal Mat image, @ByVal Size patternSize, @ByVal Mat centers); @Namespace("cv") public static native @Cast("bool") boolean findCirclesGrid( @ByVal UMat image, @ByVal Size patternSize, @ByVal UMat centers, int flags/*=cv::CALIB_CB_SYMMETRIC_GRID*/, @Cast("cv::FeatureDetector*") @Ptr Feature2D blobDetector/*=cv::SimpleBlobDetector::create()*/); @Namespace("cv") public static native @Cast("bool") boolean findCirclesGrid( @ByVal UMat image, @ByVal Size patternSize, @ByVal UMat centers); @Namespace("cv") public static native @Cast("bool") boolean findCirclesGrid( @ByVal GpuMat image, @ByVal Size patternSize, @ByVal GpuMat centers, int flags/*=cv::CALIB_CB_SYMMETRIC_GRID*/, @Cast("cv::FeatureDetector*") @Ptr Feature2D blobDetector/*=cv::SimpleBlobDetector::create()*/); @Namespace("cv") public static native @Cast("bool") boolean findCirclesGrid( @ByVal GpuMat image, @ByVal Size patternSize, @ByVal GpuMat centers); /** \brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.

@param objectPoints In the new interface it is a vector of vectors of calibration pattern points in the calibration pattern coordinate space (e.g. std::vector>). The outer vector contains as many elements as the number of the pattern views. If the same calibration pattern is shown in each view and it is fully visible, all the vectors will be the same. Although, it is possible to use partially occluded patterns, or even different patterns in different views. Then, the vectors will be different. The points are 3D, but since they are in a pattern coordinate system, then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that Z-coordinate of each input object point is 0. In the old interface all the vectors of object points from different views are concatenated together. @param imagePoints In the new interface it is a vector of vectors of the projections of calibration pattern points (e.g. std::vector>). imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i. In the old interface all the vectors of object points from different views are concatenated together. @param imageSize Size of the image used only to initialize the intrinsic camera matrix. @param cameraMatrix Output 3x3 floating-point camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS and/or CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be initialized before calling the function. @param distCoeffs Output vector of distortion coefficients \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 4, 5, 8, 12 or 14 elements. @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view (e.g. std::vector>). That is, each k-th rotation vector together with the corresponding k-th translation vector (see the next output parameter description) brings the calibration pattern from the model coordinate space (in which object points are specified) to the world coordinate space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). @param tvecs Output vector of translation vectors estimated for each pattern view. @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters. Order of deviations values: \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3, s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero. @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters. Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views, \f$R_i, T_i\f$ are concatenated 1x3 vectors. @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view. @param flags Different flags that may be zero or a combination of the following values: - **CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image center ( imageSize is used), and focal distances are computed in a least-squares fashion. Note, that if intrinsic parameters are known, there is no need to use this function just to estimate extrinsic parameters. Use solvePnP instead. - **CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too. - **CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The ratio fx/fy stays the same as in the input cameraMatrix . When CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are ignored, only their ratio is computed and used further. - **CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set to zeros and stay zero. - **CALIB_FIX_K1,...,CALIB_FIX_K6** The corresponding radial distortion coefficient is not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. - **CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the backward compatibility, this extra flag should be explicitly specified to make the calibration function use the rational model and return 8 coefficients. If the flag is not set, the function computes and returns only 5 distortion coefficients. - **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the backward compatibility, this extra flag should be explicitly specified to make the calibration function use the thin prism model and return 12 coefficients. If the flag is not set, the function computes and returns only 5 distortion coefficients. - **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. - **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the backward compatibility, this extra flag should be explicitly specified to make the calibration function use the tilted sensor model and return 14 coefficients. If the flag is not set, the function computes and returns only 5 distortion coefficients. - **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. @param criteria Termination criteria for the iterative optimization algorithm.

@return the overall RMS re-projection error.

The function estimates the intrinsic camera parameters and extrinsic parameters for each of the views. The algorithm is based on \cite Zhang2000 and \cite BouguetMCT . The coordinates of 3D object points and their corresponding 2D projections in each view must be specified. That may be achieved by using an object with a known geometry and easily detectable feature points. Such an object is called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters (when CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also be used as long as initial cameraMatrix is provided.

The algorithm performs the following steps:

- Compute the initial intrinsic parameters (the option only available for planar calibration patterns) or read them from the input parameters. The distortion coefficients are all set to zeros initially unless some of CALIB_FIX_K? are specified.

- Estimate the initial camera pose as if the intrinsic parameters have been already known. This is done using solvePnP .

- Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error, that is, the total sum of squared distances between the observed feature points imagePoints and the projected (using the current estimates for camera parameters and the poses) object points objectPoints. See projectPoints for details.

\note If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and calibrateCamera returns bad values (zero distortion coefficients, an image center very far from (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)), then you have probably used patternSize=cvSize(rows,cols) instead of using patternSize=cvSize(cols,rows) in findChessboardCorners .

\sa calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort */ @Namespace("cv") public static native @Name("calibrateCamera") double calibrateCameraExtended( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints, @ByVal Size imageSize, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal MatVector rvecs, @ByVal MatVector tvecs, @ByVal Mat stdDeviationsIntrinsics, @ByVal Mat stdDeviationsExtrinsics, @ByVal Mat perViewErrors, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(" + "cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, DBL_EPSILON)") TermCriteria criteria ); @Namespace("cv") public static native @Name("calibrateCamera") double calibrateCameraExtended( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints, @ByVal Size imageSize, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal MatVector rvecs, @ByVal MatVector tvecs, @ByVal Mat stdDeviationsIntrinsics, @ByVal Mat stdDeviationsExtrinsics, @ByVal Mat perViewErrors ); @Namespace("cv") public static native double calibrateCamera( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints, @ByVal Size imageSize, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal MatVector rvecs, @ByVal MatVector tvecs, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(" + "cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, DBL_EPSILON)") TermCriteria criteria ); @Namespace("cv") public static native double calibrateCamera( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints, @ByVal Size imageSize, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal MatVector rvecs, @ByVal MatVector tvecs ); /** \overload */ /** \brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.

This function is an extension of calibrateCamera() with the method of releasing object which was proposed in \cite strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar targets (calibration plates), this method can dramatically improve the precision of the estimated camera parameters. Both the object-releasing method and standard method are supported by this function. Use the parameter **iFixedPoint** for method selection. In the internal implementation, calibrateCamera() is a wrapper for this function.

@param objectPoints Vector of vectors of calibration pattern points in the calibration pattern coordinate space. See calibrateCamera() for details. If the method of releasing object to be used, the identical calibration board must be used in each view and it must be fully visible, and all objectPoints[i] must be the same and all points should be roughly close to a plane. **The calibration target has to be rigid, or at least static if the camera (rather than the calibration target) is shifted for grabbing images.** @param imagePoints Vector of vectors of the projections of calibration pattern points. See calibrateCamera() for details. @param imageSize Size of the image used only to initialize the intrinsic camera matrix. @param iFixedPoint The index of the 3D object point in objectPoints[0] to be fixed. It also acts as a switch for calibration method selection. If object-releasing method to be used, pass in the parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will make standard calibration method selected. Usually the top-right corner point of the calibration board grid is recommended to be fixed when object-releasing method being utilized. According to \cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and newObjPoints are only possible if coordinates of these three fixed points are accurate enough. @param cameraMatrix Output 3x3 floating-point camera matrix. See calibrateCamera() for details. @param distCoeffs Output vector of distortion coefficients. See calibrateCamera() for details. @param rvecs Output vector of rotation vectors estimated for each pattern view. See calibrateCamera() for details. @param tvecs Output vector of translation vectors estimated for each pattern view. @param newObjPoints The updated output vector of calibration pattern points. The coordinates might be scaled based on three fixed points. The returned coordinates are accurate only if the above mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter is ignored with standard calibration method. @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters. See calibrateCamera() for details. @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters. See calibrateCamera() for details. @param stdDeviationsObjPoints Output vector of standard deviations estimated for refined coordinates of calibration pattern points. It has the same size and order as objectPoints[0] vector. This parameter is ignored with standard calibration method. @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view. @param flags Different flags that may be zero or a combination of some predefined values. See calibrateCamera() for details. If the method of releasing object is used, the calibration time may be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially less precise and less stable in some rare cases. @param criteria Termination criteria for the iterative optimization algorithm.

@return the overall RMS re-projection error.

The function estimates the intrinsic camera parameters and extrinsic parameters for each of the views. The algorithm is based on \cite Zhang2000, \cite BouguetMCT and \cite strobl2011iccv. See calibrateCamera() for other detailed explanations. \sa calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort */ @Namespace("cv") public static native @Name("calibrateCameraRO") double calibrateCameraROExtended( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints, @ByVal Size imageSize, int iFixedPoint, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal MatVector rvecs, @ByVal MatVector tvecs, @ByVal Mat newObjPoints, @ByVal Mat stdDeviationsIntrinsics, @ByVal Mat stdDeviationsExtrinsics, @ByVal Mat stdDeviationsObjPoints, @ByVal Mat perViewErrors, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(" + "cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, DBL_EPSILON)") TermCriteria criteria ); @Namespace("cv") public static native @Name("calibrateCameraRO") double calibrateCameraROExtended( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints, @ByVal Size imageSize, int iFixedPoint, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal MatVector rvecs, @ByVal MatVector tvecs, @ByVal Mat newObjPoints, @ByVal Mat stdDeviationsIntrinsics, @ByVal Mat stdDeviationsExtrinsics, @ByVal Mat stdDeviationsObjPoints, @ByVal Mat perViewErrors );@Namespace("cv") public static native double calibrateCameraRO( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints, @ByVal Size imageSize, int iFixedPoint, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal MatVector rvecs, @ByVal MatVector tvecs, @ByVal Mat newObjPoints, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(" + "cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, DBL_EPSILON)") TermCriteria criteria ); @Namespace("cv") public static native double calibrateCameraRO( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints, @ByVal Size imageSize, int iFixedPoint, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal MatVector rvecs, @ByVal MatVector tvecs, @ByVal Mat newObjPoints ); /** \overload */ /** \brief Computes useful camera characteristics from the camera matrix.

@param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or stereoCalibrate . @param imageSize Input image size in pixels. @param apertureWidth Physical width in mm of the sensor. @param apertureHeight Physical height in mm of the sensor. @param fovx Output field of view in degrees along the horizontal sensor axis. @param fovy Output field of view in degrees along the vertical sensor axis. @param focalLength Focal length of the lens in mm. @param principalPoint Principal point in mm. @param aspectRatio \f$f_y/f_x\f$

The function computes various useful camera characteristics from the previously estimated camera matrix.

\note Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for the chessboard pitch (it can thus be any value). */ @Namespace("cv") public static native void calibrationMatrixValues( @ByVal Mat cameraMatrix, @ByVal Size imageSize, double apertureWidth, double apertureHeight, @ByRef DoublePointer fovx, @ByRef DoublePointer fovy, @ByRef DoublePointer focalLength, @ByRef Point2d principalPoint, @ByRef DoublePointer aspectRatio ); @Namespace("cv") public static native void calibrationMatrixValues( @ByVal Mat cameraMatrix, @ByVal Size imageSize, double apertureWidth, double apertureHeight, @ByRef DoubleBuffer fovx, @ByRef DoubleBuffer fovy, @ByRef DoubleBuffer focalLength, @ByRef Point2d principalPoint, @ByRef DoubleBuffer aspectRatio ); @Namespace("cv") public static native void calibrationMatrixValues( @ByVal Mat cameraMatrix, @ByVal Size imageSize, double apertureWidth, double apertureHeight, @ByRef double[] fovx, @ByRef double[] fovy, @ByRef double[] focalLength, @ByRef Point2d principalPoint, @ByRef double[] aspectRatio ); @Namespace("cv") public static native void calibrationMatrixValues( @ByVal UMat cameraMatrix, @ByVal Size imageSize, double apertureWidth, double apertureHeight, @ByRef DoublePointer fovx, @ByRef DoublePointer fovy, @ByRef DoublePointer focalLength, @ByRef Point2d principalPoint, @ByRef DoublePointer aspectRatio ); @Namespace("cv") public static native void calibrationMatrixValues( @ByVal UMat cameraMatrix, @ByVal Size imageSize, double apertureWidth, double apertureHeight, @ByRef DoubleBuffer fovx, @ByRef DoubleBuffer fovy, @ByRef DoubleBuffer focalLength, @ByRef Point2d principalPoint, @ByRef DoubleBuffer aspectRatio ); @Namespace("cv") public static native void calibrationMatrixValues( @ByVal UMat cameraMatrix, @ByVal Size imageSize, double apertureWidth, double apertureHeight, @ByRef double[] fovx, @ByRef double[] fovy, @ByRef double[] focalLength, @ByRef Point2d principalPoint, @ByRef double[] aspectRatio ); @Namespace("cv") public static native void calibrationMatrixValues( @ByVal GpuMat cameraMatrix, @ByVal Size imageSize, double apertureWidth, double apertureHeight, @ByRef DoublePointer fovx, @ByRef DoublePointer fovy, @ByRef DoublePointer focalLength, @ByRef Point2d principalPoint, @ByRef DoublePointer aspectRatio ); @Namespace("cv") public static native void calibrationMatrixValues( @ByVal GpuMat cameraMatrix, @ByVal Size imageSize, double apertureWidth, double apertureHeight, @ByRef DoubleBuffer fovx, @ByRef DoubleBuffer fovy, @ByRef DoubleBuffer focalLength, @ByRef Point2d principalPoint, @ByRef DoubleBuffer aspectRatio ); @Namespace("cv") public static native void calibrationMatrixValues( @ByVal GpuMat cameraMatrix, @ByVal Size imageSize, double apertureWidth, double apertureHeight, @ByRef double[] fovx, @ByRef double[] fovy, @ByRef double[] focalLength, @ByRef Point2d principalPoint, @ByRef double[] aspectRatio ); /** \brief Calibrates the stereo camera.

@param objectPoints Vector of vectors of the calibration pattern points. @param imagePoints1 Vector of vectors of the projections of the calibration pattern points, observed by the first camera. @param imagePoints2 Vector of vectors of the projections of the calibration pattern points, observed by the second camera. @param cameraMatrix1 Input/output first camera matrix: \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If any of CALIB_USE_INTRINSIC_GUESS , CALIB_FIX_ASPECT_RATIO , CALIB_FIX_INTRINSIC , or CALIB_FIX_FOCAL_LENGTH are specified, some or all of the matrix components must be initialized. See the flags description for details. @param distCoeffs1 Input/output vector of distortion coefficients \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 4, 5, 8, 12 or 14 elements. The output vector length depends on the flags. @param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1 @param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter is similar to distCoeffs1 . @param imageSize Size of the image used only to initialize intrinsic camera matrix. @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems. @param T Output translation vector between the coordinate systems of the cameras. @param E Output essential matrix. @param F Output fundamental matrix. @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view. @param flags Different flags that may be zero or a combination of the following values: - **CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F matrices are estimated. - **CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters according to the specified flags. Initial values are provided by the user. - **CALIB_USE_EXTRINSIC_GUESS** R, T contain valid initial values that are optimized further. Otherwise R, T are initialized to the median value of the pattern views (each dimension separately). - **CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization. - **CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ . - **CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$ . - **CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ . - **CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to zeros and fix there. - **CALIB_FIX_K1,...,CALIB_FIX_K6** Do not change the corresponding radial distortion coefficient during the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. - **CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward compatibility, this extra flag should be explicitly specified to make the calibration function use the rational model and return 8 coefficients. If the flag is not set, the function computes and returns only 5 distortion coefficients. - **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the backward compatibility, this extra flag should be explicitly specified to make the calibration function use the thin prism model and return 12 coefficients. If the flag is not set, the function computes and returns only 5 distortion coefficients. - **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. - **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the backward compatibility, this extra flag should be explicitly specified to make the calibration function use the tilted sensor model and return 14 coefficients. If the flag is not set, the function computes and returns only 5 distortion coefficients. - **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. @param criteria Termination criteria for the iterative optimization algorithm.

The function estimates transformation between two cameras making a stereo pair. If you have a stereo camera where the relative position and orientation of two cameras is fixed, and if you computed poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2), respectively (this can be done with solvePnP ), then those poses definitely relate to each other. This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only need to know the position and orientation of the second camera relative to the first camera. This is what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that:

\f[R_2=R*R_1\f] \f[T_2=R*T_1 + T,\f]

Optionally, it computes the essential matrix E:

\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f]

where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function can also compute the fundamental matrix F:

\f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f]

Besides the stereo-related information, the function can also perform a full calibration of each of two cameras. However, due to the high dimensionality of the parameter space and noise in the input data, the function can diverge from the correct solution. If the intrinsic parameters can be estimated with high accuracy for each of the cameras individually (for example, using calibrateCamera ), you are recommended to do so and then pass CALIB_FIX_INTRINSIC flag to the function along with the computed intrinsic parameters. Otherwise, if all the parameters are estimated at once, it makes sense to restrict some parameters, for example, pass CALIB_SAME_FOCAL_LENGTH and CALIB_ZERO_TANGENT_DIST flags, which is usually a reasonable assumption.

Similarly to calibrateCamera , the function minimizes the total re-projection error for all the points in all the available views from both cameras. The function returns the final value of the re-projection error. */ @Namespace("cv") public static native @Name("stereoCalibrate") double stereoCalibrateExtended( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints1, @ByVal Point2fVectorVector imagePoints2, @ByVal Mat cameraMatrix1, @ByVal Mat distCoeffs1, @ByVal Mat cameraMatrix2, @ByVal Mat distCoeffs2, @ByVal Size imageSize, @ByVal Mat R,@ByVal Mat T, @ByVal Mat E, @ByVal Mat F, @ByVal Mat perViewErrors, int flags/*=cv::CALIB_FIX_INTRINSIC*/, @ByVal(nullValue = "cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 30, 1e-6)") TermCriteria criteria ); @Namespace("cv") public static native @Name("stereoCalibrate") double stereoCalibrateExtended( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints1, @ByVal Point2fVectorVector imagePoints2, @ByVal Mat cameraMatrix1, @ByVal Mat distCoeffs1, @ByVal Mat cameraMatrix2, @ByVal Mat distCoeffs2, @ByVal Size imageSize, @ByVal Mat R,@ByVal Mat T, @ByVal Mat E, @ByVal Mat F, @ByVal Mat perViewErrors ); @Namespace("cv") public static native double stereoCalibrate( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints1, @ByVal Point2fVectorVector imagePoints2, @ByVal Mat cameraMatrix1, @ByVal Mat distCoeffs1, @ByVal Mat cameraMatrix2, @ByVal Mat distCoeffs2, @ByVal Size imageSize, @ByVal Mat R,@ByVal Mat T, @ByVal Mat E, @ByVal Mat F, int flags/*=cv::CALIB_FIX_INTRINSIC*/, @ByVal(nullValue = "cv::TermCriteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 30, 1e-6)") TermCriteria criteria ); @Namespace("cv") public static native double stereoCalibrate( @ByVal Point3fVectorVector objectPoints, @ByVal Point2fVectorVector imagePoints1, @ByVal Point2fVectorVector imagePoints2, @ByVal Mat cameraMatrix1, @ByVal Mat distCoeffs1, @ByVal Mat cameraMatrix2, @ByVal Mat distCoeffs2, @ByVal Size imageSize, @ByVal Mat R,@ByVal Mat T, @ByVal Mat E, @ByVal Mat F ); /** \overload */ /** \brief Computes rectification transforms for each head of a calibrated stereo camera.

@param cameraMatrix1 First camera matrix. @param distCoeffs1 First camera distortion parameters. @param cameraMatrix2 Second camera matrix. @param distCoeffs2 Second camera distortion parameters. @param imageSize Size of the image used for stereo calibration. @param R Rotation matrix between the coordinate systems of the first and the second cameras. @param T Translation vector between coordinate systems of the cameras. @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera. @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera. @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ). @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set, the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area. @param alpha Free scaling parameter. If it is -1 or absent, the function performs the default scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified images are zoomed and shifted so that only valid pixels are visible (no black areas after rectification). alpha=1 means that the rectified image is decimated and shifted so that all the pixels from the original images from the cameras are retained in the rectified images (no source image pixels are lost). Obviously, any intermediate value yields an intermediate result between those two extreme cases. @param newImageSize New image resolution after rectification. The same size should be passed to initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to larger value can help you preserve details in the original image, especially when there is a big radial distortion. @param validPixROI1 Optional output rectangles inside the rectified images where all the pixels are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below). @param validPixROI2 Optional output rectangles inside the rectified images where all the pixels are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller (see the picture below).

The function computes the rotation matrices for each camera that (virtually) make both camera image planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate as input. As output, it provides two rotation matrices and also two projection matrices in the new coordinates. The function distinguishes the following two cases:

- **Horizontal stereo**: the first and the second camera views are shifted relative to each other mainly along the x axis (with possible small vertical shift). In the rectified images, the corresponding epipolar lines in the left and right cameras are horizontal and have the same y-coordinate. P1 and P2 look like:

\f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]

\f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]

where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if CALIB_ZERO_DISPARITY is set.

- **Vertical stereo**: the first and the second camera views are shifted relative to each other mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:

\f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]

\f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]

where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is set.

As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to initialize the rectification map for each camera.

See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through the corresponding image regions. This means that the images are well rectified, which is what most stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that their interiors are all valid pixels.

![image](pics/stereo_undistort.jpg) */ @Namespace("cv") public static native void stereoRectify( @ByVal Mat cameraMatrix1, @ByVal Mat distCoeffs1, @ByVal Mat cameraMatrix2, @ByVal Mat distCoeffs2, @ByVal Size imageSize, @ByVal Mat R, @ByVal Mat T, @ByVal Mat R1, @ByVal Mat R2, @ByVal Mat P1, @ByVal Mat P2, @ByVal Mat Q, int flags/*=cv::CALIB_ZERO_DISPARITY*/, double alpha/*=-1*/, @ByVal(nullValue = "cv::Size()") Size newImageSize, Rect validPixROI1/*=0*/, Rect validPixROI2/*=0*/ ); @Namespace("cv") public static native void stereoRectify( @ByVal Mat cameraMatrix1, @ByVal Mat distCoeffs1, @ByVal Mat cameraMatrix2, @ByVal Mat distCoeffs2, @ByVal Size imageSize, @ByVal Mat R, @ByVal Mat T, @ByVal Mat R1, @ByVal Mat R2, @ByVal Mat P1, @ByVal Mat P2, @ByVal Mat Q ); @Namespace("cv") public static native void stereoRectify( @ByVal UMat cameraMatrix1, @ByVal UMat distCoeffs1, @ByVal UMat cameraMatrix2, @ByVal UMat distCoeffs2, @ByVal Size imageSize, @ByVal UMat R, @ByVal UMat T, @ByVal UMat R1, @ByVal UMat R2, @ByVal UMat P1, @ByVal UMat P2, @ByVal UMat Q, int flags/*=cv::CALIB_ZERO_DISPARITY*/, double alpha/*=-1*/, @ByVal(nullValue = "cv::Size()") Size newImageSize, Rect validPixROI1/*=0*/, Rect validPixROI2/*=0*/ ); @Namespace("cv") public static native void stereoRectify( @ByVal UMat cameraMatrix1, @ByVal UMat distCoeffs1, @ByVal UMat cameraMatrix2, @ByVal UMat distCoeffs2, @ByVal Size imageSize, @ByVal UMat R, @ByVal UMat T, @ByVal UMat R1, @ByVal UMat R2, @ByVal UMat P1, @ByVal UMat P2, @ByVal UMat Q ); @Namespace("cv") public static native void stereoRectify( @ByVal GpuMat cameraMatrix1, @ByVal GpuMat distCoeffs1, @ByVal GpuMat cameraMatrix2, @ByVal GpuMat distCoeffs2, @ByVal Size imageSize, @ByVal GpuMat R, @ByVal GpuMat T, @ByVal GpuMat R1, @ByVal GpuMat R2, @ByVal GpuMat P1, @ByVal GpuMat P2, @ByVal GpuMat Q, int flags/*=cv::CALIB_ZERO_DISPARITY*/, double alpha/*=-1*/, @ByVal(nullValue = "cv::Size()") Size newImageSize, Rect validPixROI1/*=0*/, Rect validPixROI2/*=0*/ ); @Namespace("cv") public static native void stereoRectify( @ByVal GpuMat cameraMatrix1, @ByVal GpuMat distCoeffs1, @ByVal GpuMat cameraMatrix2, @ByVal GpuMat distCoeffs2, @ByVal Size imageSize, @ByVal GpuMat R, @ByVal GpuMat T, @ByVal GpuMat R1, @ByVal GpuMat R2, @ByVal GpuMat P1, @ByVal GpuMat P2, @ByVal GpuMat Q ); /** \brief Computes a rectification transform for an uncalibrated stereo camera.

@param points1 Array of feature points in the first image. @param points2 The corresponding points in the second image. The same formats as in findFundamentalMat are supported. @param F Input fundamental matrix. It can be computed from the same set of point pairs using findFundamentalMat . @param imgSize Size of the image. @param H1 Output rectification homography matrix for the first image. @param H2 Output rectification homography matrix for the second image. @param threshold Optional threshold used to filter out the outliers. If the parameter is greater than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are rejected prior to computing the homographies. Otherwise, all the points are considered inliers.

The function computes the rectification transformations without knowing intrinsic parameters of the cameras and their relative position in the space, which explains the suffix "uncalibrated". Another related difference from stereoRectify is that the function outputs not the rectification transformations in the object (3D) space, but the planar perspective transformations encoded by the homography matrices H1 and H2 . The function implements the algorithm \cite Hartley99 .

\note While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion, it would be better to correct it before computing the fundamental matrix and calling this function. For example, distortion coefficients can be estimated for each head of stereo camera separately by using calibrateCamera . Then, the images can be corrected using undistort , or just the point coordinates can be corrected with undistortPoints . */ @Namespace("cv") public static native @Cast("bool") boolean stereoRectifyUncalibrated( @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat F, @ByVal Size imgSize, @ByVal Mat H1, @ByVal Mat H2, double threshold/*=5*/ ); @Namespace("cv") public static native @Cast("bool") boolean stereoRectifyUncalibrated( @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat F, @ByVal Size imgSize, @ByVal Mat H1, @ByVal Mat H2 ); @Namespace("cv") public static native @Cast("bool") boolean stereoRectifyUncalibrated( @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat F, @ByVal Size imgSize, @ByVal UMat H1, @ByVal UMat H2, double threshold/*=5*/ ); @Namespace("cv") public static native @Cast("bool") boolean stereoRectifyUncalibrated( @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat F, @ByVal Size imgSize, @ByVal UMat H1, @ByVal UMat H2 ); @Namespace("cv") public static native @Cast("bool") boolean stereoRectifyUncalibrated( @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat F, @ByVal Size imgSize, @ByVal GpuMat H1, @ByVal GpuMat H2, double threshold/*=5*/ ); @Namespace("cv") public static native @Cast("bool") boolean stereoRectifyUncalibrated( @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat F, @ByVal Size imgSize, @ByVal GpuMat H1, @ByVal GpuMat H2 ); /** computes the rectification transformations for 3-head camera, where all the heads are on the same line. */ @Namespace("cv") public static native float rectify3Collinear( @ByVal Mat cameraMatrix1, @ByVal Mat distCoeffs1, @ByVal Mat cameraMatrix2, @ByVal Mat distCoeffs2, @ByVal Mat cameraMatrix3, @ByVal Mat distCoeffs3, @ByVal MatVector imgpt1, @ByVal MatVector imgpt3, @ByVal Size imageSize, @ByVal Mat R12, @ByVal Mat T12, @ByVal Mat R13, @ByVal Mat T13, @ByVal Mat R1, @ByVal Mat R2, @ByVal Mat R3, @ByVal Mat P1, @ByVal Mat P2, @ByVal Mat P3, @ByVal Mat Q, double alpha, @ByVal Size newImgSize, Rect roi1, Rect roi2, int flags ); @Namespace("cv") public static native float rectify3Collinear( @ByVal Mat cameraMatrix1, @ByVal Mat distCoeffs1, @ByVal Mat cameraMatrix2, @ByVal Mat distCoeffs2, @ByVal Mat cameraMatrix3, @ByVal Mat distCoeffs3, @ByVal UMatVector imgpt1, @ByVal UMatVector imgpt3, @ByVal Size imageSize, @ByVal Mat R12, @ByVal Mat T12, @ByVal Mat R13, @ByVal Mat T13, @ByVal Mat R1, @ByVal Mat R2, @ByVal Mat R3, @ByVal Mat P1, @ByVal Mat P2, @ByVal Mat P3, @ByVal Mat Q, double alpha, @ByVal Size newImgSize, Rect roi1, Rect roi2, int flags ); @Namespace("cv") public static native float rectify3Collinear( @ByVal Mat cameraMatrix1, @ByVal Mat distCoeffs1, @ByVal Mat cameraMatrix2, @ByVal Mat distCoeffs2, @ByVal Mat cameraMatrix3, @ByVal Mat distCoeffs3, @ByVal GpuMatVector imgpt1, @ByVal GpuMatVector imgpt3, @ByVal Size imageSize, @ByVal Mat R12, @ByVal Mat T12, @ByVal Mat R13, @ByVal Mat T13, @ByVal Mat R1, @ByVal Mat R2, @ByVal Mat R3, @ByVal Mat P1, @ByVal Mat P2, @ByVal Mat P3, @ByVal Mat Q, double alpha, @ByVal Size newImgSize, Rect roi1, Rect roi2, int flags ); @Namespace("cv") public static native float rectify3Collinear( @ByVal UMat cameraMatrix1, @ByVal UMat distCoeffs1, @ByVal UMat cameraMatrix2, @ByVal UMat distCoeffs2, @ByVal UMat cameraMatrix3, @ByVal UMat distCoeffs3, @ByVal MatVector imgpt1, @ByVal MatVector imgpt3, @ByVal Size imageSize, @ByVal UMat R12, @ByVal UMat T12, @ByVal UMat R13, @ByVal UMat T13, @ByVal UMat R1, @ByVal UMat R2, @ByVal UMat R3, @ByVal UMat P1, @ByVal UMat P2, @ByVal UMat P3, @ByVal UMat Q, double alpha, @ByVal Size newImgSize, Rect roi1, Rect roi2, int flags ); @Namespace("cv") public static native float rectify3Collinear( @ByVal UMat cameraMatrix1, @ByVal UMat distCoeffs1, @ByVal UMat cameraMatrix2, @ByVal UMat distCoeffs2, @ByVal UMat cameraMatrix3, @ByVal UMat distCoeffs3, @ByVal UMatVector imgpt1, @ByVal UMatVector imgpt3, @ByVal Size imageSize, @ByVal UMat R12, @ByVal UMat T12, @ByVal UMat R13, @ByVal UMat T13, @ByVal UMat R1, @ByVal UMat R2, @ByVal UMat R3, @ByVal UMat P1, @ByVal UMat P2, @ByVal UMat P3, @ByVal UMat Q, double alpha, @ByVal Size newImgSize, Rect roi1, Rect roi2, int flags ); @Namespace("cv") public static native float rectify3Collinear( @ByVal UMat cameraMatrix1, @ByVal UMat distCoeffs1, @ByVal UMat cameraMatrix2, @ByVal UMat distCoeffs2, @ByVal UMat cameraMatrix3, @ByVal UMat distCoeffs3, @ByVal GpuMatVector imgpt1, @ByVal GpuMatVector imgpt3, @ByVal Size imageSize, @ByVal UMat R12, @ByVal UMat T12, @ByVal UMat R13, @ByVal UMat T13, @ByVal UMat R1, @ByVal UMat R2, @ByVal UMat R3, @ByVal UMat P1, @ByVal UMat P2, @ByVal UMat P3, @ByVal UMat Q, double alpha, @ByVal Size newImgSize, Rect roi1, Rect roi2, int flags ); @Namespace("cv") public static native float rectify3Collinear( @ByVal GpuMat cameraMatrix1, @ByVal GpuMat distCoeffs1, @ByVal GpuMat cameraMatrix2, @ByVal GpuMat distCoeffs2, @ByVal GpuMat cameraMatrix3, @ByVal GpuMat distCoeffs3, @ByVal MatVector imgpt1, @ByVal MatVector imgpt3, @ByVal Size imageSize, @ByVal GpuMat R12, @ByVal GpuMat T12, @ByVal GpuMat R13, @ByVal GpuMat T13, @ByVal GpuMat R1, @ByVal GpuMat R2, @ByVal GpuMat R3, @ByVal GpuMat P1, @ByVal GpuMat P2, @ByVal GpuMat P3, @ByVal GpuMat Q, double alpha, @ByVal Size newImgSize, Rect roi1, Rect roi2, int flags ); @Namespace("cv") public static native float rectify3Collinear( @ByVal GpuMat cameraMatrix1, @ByVal GpuMat distCoeffs1, @ByVal GpuMat cameraMatrix2, @ByVal GpuMat distCoeffs2, @ByVal GpuMat cameraMatrix3, @ByVal GpuMat distCoeffs3, @ByVal UMatVector imgpt1, @ByVal UMatVector imgpt3, @ByVal Size imageSize, @ByVal GpuMat R12, @ByVal GpuMat T12, @ByVal GpuMat R13, @ByVal GpuMat T13, @ByVal GpuMat R1, @ByVal GpuMat R2, @ByVal GpuMat R3, @ByVal GpuMat P1, @ByVal GpuMat P2, @ByVal GpuMat P3, @ByVal GpuMat Q, double alpha, @ByVal Size newImgSize, Rect roi1, Rect roi2, int flags ); @Namespace("cv") public static native float rectify3Collinear( @ByVal GpuMat cameraMatrix1, @ByVal GpuMat distCoeffs1, @ByVal GpuMat cameraMatrix2, @ByVal GpuMat distCoeffs2, @ByVal GpuMat cameraMatrix3, @ByVal GpuMat distCoeffs3, @ByVal GpuMatVector imgpt1, @ByVal GpuMatVector imgpt3, @ByVal Size imageSize, @ByVal GpuMat R12, @ByVal GpuMat T12, @ByVal GpuMat R13, @ByVal GpuMat T13, @ByVal GpuMat R1, @ByVal GpuMat R2, @ByVal GpuMat R3, @ByVal GpuMat P1, @ByVal GpuMat P2, @ByVal GpuMat P3, @ByVal GpuMat Q, double alpha, @ByVal Size newImgSize, Rect roi1, Rect roi2, int flags ); /** \brief Returns the new camera matrix based on the free scaling parameter.

@param cameraMatrix Input camera matrix. @param distCoeffs Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. @param imageSize Original image size. @param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are valid) and 1 (when all the source image pixels are retained in the undistorted image). See stereoRectify for details. @param newImgSize Image size after rectification. By default, it is set to imageSize . @param validPixROI Optional output rectangle that outlines all-good-pixels region in the undistorted image. See roi1, roi2 description in stereoRectify . @param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the principal point should be at the image center or not. By default, the principal point is chosen to best fit a subset of the source image (determined by alpha) to the corrected image. @return new_camera_matrix Output new camera matrix.

The function computes and returns the optimal new camera matrix based on the free scaling parameter. By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original image pixels if there is valuable information in the corners alpha=1 , or get something in between. When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to "virtual" pixels outside of the captured distorted image. The original camera matrix, distortion coefficients, the computed new camera matrix, and newImageSize should be passed to initUndistortRectifyMap to produce the maps for remap . */ @Namespace("cv") public static native @ByVal Mat getOptimalNewCameraMatrix( @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Size imageSize, double alpha, @ByVal(nullValue = "cv::Size()") Size newImgSize, Rect validPixROI/*=0*/, @Cast("bool") boolean centerPrincipalPoint/*=false*/); @Namespace("cv") public static native @ByVal Mat getOptimalNewCameraMatrix( @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Size imageSize, double alpha); @Namespace("cv") public static native @ByVal Mat getOptimalNewCameraMatrix( @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal Size imageSize, double alpha, @ByVal(nullValue = "cv::Size()") Size newImgSize, Rect validPixROI/*=0*/, @Cast("bool") boolean centerPrincipalPoint/*=false*/); @Namespace("cv") public static native @ByVal Mat getOptimalNewCameraMatrix( @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal Size imageSize, double alpha); @Namespace("cv") public static native @ByVal Mat getOptimalNewCameraMatrix( @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal Size imageSize, double alpha, @ByVal(nullValue = "cv::Size()") Size newImgSize, Rect validPixROI/*=0*/, @Cast("bool") boolean centerPrincipalPoint/*=false*/); @Namespace("cv") public static native @ByVal Mat getOptimalNewCameraMatrix( @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal Size imageSize, double alpha); /** \brief Converts points from Euclidean to homogeneous space.

@param src Input vector of N-dimensional points. @param dst Output vector of N+1-dimensional points.

The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1). */ @Namespace("cv") public static native void convertPointsToHomogeneous( @ByVal Mat src, @ByVal Mat dst ); @Namespace("cv") public static native void convertPointsToHomogeneous( @ByVal UMat src, @ByVal UMat dst ); @Namespace("cv") public static native void convertPointsToHomogeneous( @ByVal GpuMat src, @ByVal GpuMat dst ); /** \brief Converts points from homogeneous to Euclidean space.

@param src Input vector of N-dimensional points. @param dst Output vector of N-1-dimensional points.

The function converts points homogeneous to Euclidean space using perspective projection. That is, each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the output point coordinates will be (0,0,0,...). */ @Namespace("cv") public static native void convertPointsFromHomogeneous( @ByVal Mat src, @ByVal Mat dst ); @Namespace("cv") public static native void convertPointsFromHomogeneous( @ByVal UMat src, @ByVal UMat dst ); @Namespace("cv") public static native void convertPointsFromHomogeneous( @ByVal GpuMat src, @ByVal GpuMat dst ); /** \brief Converts points to/from homogeneous coordinates.

@param src Input array or vector of 2D, 3D, or 4D points. @param dst Output vector of 2D, 3D, or 4D points.

The function converts 2D or 3D points from/to homogeneous coordinates by calling either convertPointsToHomogeneous or convertPointsFromHomogeneous.

\note The function is obsolete. Use one of the previous two functions instead. */ @Namespace("cv") public static native void convertPointsHomogeneous( @ByVal Mat src, @ByVal Mat dst ); @Namespace("cv") public static native void convertPointsHomogeneous( @ByVal UMat src, @ByVal UMat dst ); @Namespace("cv") public static native void convertPointsHomogeneous( @ByVal GpuMat src, @ByVal GpuMat dst ); /** \brief Calculates a fundamental matrix from the corresponding points in two images.

@param points1 Array of N points from the first image. The point coordinates should be floating-point (single or double precision). @param points2 Array of the second image points of the same size and format as points1 . @param method Method for computing a fundamental matrix. - **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$ - **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$ - **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$ - **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$ @param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar line in pixels, beyond which the point is considered an outlier and is not used for computing the final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the point localization, image resolution, and the image noise. @param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level of confidence (probability) that the estimated matrix is correct. @param mask

The epipolar geometry is described by the following equation:

\f[[p_2; 1]^T F [p_1; 1] = 0\f]

where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the second images, respectively.

The function calculates the fundamental matrix using one of four methods listed above and returns the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3 matrices sequentially).

The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the epipolar lines corresponding to the specified points. It can also be passed to stereoRectifyUncalibrated to compute the rectification transformation. :

{@code
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
    int point_count = 100;
    vector points1(point_count);
    vector points2(point_count);

    // initialize the points here ...
    for( int i = 0; i < point_count; i++ )
    {
        points1[i] = ...;
        points2[i] = ...;
    }

    Mat fundamental_matrix =
     findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
}
*/ @Namespace("cv") public static native @ByVal Mat findFundamentalMat( @ByVal Mat points1, @ByVal Mat points2, int method/*=cv::FM_RANSAC*/, double ransacReprojThreshold/*=3.*/, double confidence/*=0.99*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat mask ); @Namespace("cv") public static native @ByVal Mat findFundamentalMat( @ByVal Mat points1, @ByVal Mat points2 ); @Namespace("cv") public static native @ByVal Mat findFundamentalMat( @ByVal UMat points1, @ByVal UMat points2, int method/*=cv::FM_RANSAC*/, double ransacReprojThreshold/*=3.*/, double confidence/*=0.99*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat mask ); @Namespace("cv") public static native @ByVal Mat findFundamentalMat( @ByVal UMat points1, @ByVal UMat points2 ); @Namespace("cv") public static native @ByVal Mat findFundamentalMat( @ByVal GpuMat points1, @ByVal GpuMat points2, int method/*=cv::FM_RANSAC*/, double ransacReprojThreshold/*=3.*/, double confidence/*=0.99*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat mask ); @Namespace("cv") public static native @ByVal Mat findFundamentalMat( @ByVal GpuMat points1, @ByVal GpuMat points2 ); /** \overload */ @Namespace("cv") public static native @ByVal Mat findFundamentalMat( @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat mask, int method/*=cv::FM_RANSAC*/, double ransacReprojThreshold/*=3.*/, double confidence/*=0.99*/ ); @Namespace("cv") public static native @ByVal Mat findFundamentalMat( @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat mask ); @Namespace("cv") public static native @ByVal Mat findFundamentalMat( @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat mask, int method/*=cv::FM_RANSAC*/, double ransacReprojThreshold/*=3.*/, double confidence/*=0.99*/ ); @Namespace("cv") public static native @ByVal Mat findFundamentalMat( @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat mask ); @Namespace("cv") public static native @ByVal Mat findFundamentalMat( @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat mask, int method/*=cv::FM_RANSAC*/, double ransacReprojThreshold/*=3.*/, double confidence/*=0.99*/ ); @Namespace("cv") public static native @ByVal Mat findFundamentalMat( @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat mask ); /** \brief Calculates an essential matrix from the corresponding points in two images.

@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should be floating-point (single or double precision). @param points2 Array of the second image points of the same size and format as points1 . @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . Note that this function assumes that points1 and points2 are feature points from cameras with the same camera matrix. @param method Method for computing an essential matrix. - **RANSAC** for the RANSAC algorithm. - **LMEDS** for the LMedS algorithm. @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of confidence (probability) that the estimated matrix is correct. @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar line in pixels, beyond which the point is considered an outlier and is not used for computing the final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the point localization, image resolution, and the image noise. @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 for the other points. The array is computed only in the RANSAC and LMedS methods.

This function estimates essential matrix based on the five-point algorithm solver in \cite Nister03 . \cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:

\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]

where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the second images, respectively. The result of this function may be passed further to decomposeEssentialMat or recoverPose to recover the relative pose between cameras. */ @Namespace("cv") public static native @ByVal Mat findEssentialMat( @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat cameraMatrix, int method/*=cv::RANSAC*/, double prob/*=0.999*/, double threshold/*=1.0*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat mask ); @Namespace("cv") public static native @ByVal Mat findEssentialMat( @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat cameraMatrix ); @Namespace("cv") public static native @ByVal Mat findEssentialMat( @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat cameraMatrix, int method/*=cv::RANSAC*/, double prob/*=0.999*/, double threshold/*=1.0*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat mask ); @Namespace("cv") public static native @ByVal Mat findEssentialMat( @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat cameraMatrix ); @Namespace("cv") public static native @ByVal Mat findEssentialMat( @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat cameraMatrix, int method/*=cv::RANSAC*/, double prob/*=0.999*/, double threshold/*=1.0*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat mask ); @Namespace("cv") public static native @ByVal Mat findEssentialMat( @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat cameraMatrix ); /** \overload @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should be floating-point (single or double precision). @param points2 Array of the second image points of the same size and format as points1 . @param focal focal length of the camera. Note that this function assumes that points1 and points2 are feature points from cameras with same focal length and principal point. @param pp principal point of the camera. @param method Method for computing a fundamental matrix. - **RANSAC** for the RANSAC algorithm. - **LMEDS** for the LMedS algorithm. @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar line in pixels, beyond which the point is considered an outlier and is not used for computing the final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the point localization, image resolution, and the image noise. @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of confidence (probability) that the estimated matrix is correct. @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 for the other points. The array is computed only in the RANSAC and LMedS methods.

This function differs from the one above that it computes camera matrix from focal length and principal point:

\f[K = \begin{bmatrix} f & 0 & x_{pp} \\ 0 & f & y_{pp} \\ 0 & 0 & 1 \end{bmatrix}\f] */ @Namespace("cv") public static native @ByVal Mat findEssentialMat( @ByVal Mat points1, @ByVal Mat points2, double focal/*=1.0*/, @ByVal(nullValue = "cv::Point2d(0, 0)") Point2d pp, int method/*=cv::RANSAC*/, double prob/*=0.999*/, double threshold/*=1.0*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat mask ); @Namespace("cv") public static native @ByVal Mat findEssentialMat( @ByVal Mat points1, @ByVal Mat points2 ); @Namespace("cv") public static native @ByVal Mat findEssentialMat( @ByVal UMat points1, @ByVal UMat points2, double focal/*=1.0*/, @ByVal(nullValue = "cv::Point2d(0, 0)") Point2d pp, int method/*=cv::RANSAC*/, double prob/*=0.999*/, double threshold/*=1.0*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat mask ); @Namespace("cv") public static native @ByVal Mat findEssentialMat( @ByVal UMat points1, @ByVal UMat points2 ); @Namespace("cv") public static native @ByVal Mat findEssentialMat( @ByVal GpuMat points1, @ByVal GpuMat points2, double focal/*=1.0*/, @ByVal(nullValue = "cv::Point2d(0, 0)") Point2d pp, int method/*=cv::RANSAC*/, double prob/*=0.999*/, double threshold/*=1.0*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat mask ); @Namespace("cv") public static native @ByVal Mat findEssentialMat( @ByVal GpuMat points1, @ByVal GpuMat points2 ); /** \brief Decompose an essential matrix to possible rotations and translation.

@param E The input essential matrix. @param R1 One possible rotation matrix. @param R2 Another possible rotation matrix. @param t One possible translation.

This function decompose an essential matrix E using svd decomposition \cite HartleyZ00 . Generally 4 possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By decomposing E, you can only get the direction of the translation, so the function returns unit t. */ @Namespace("cv") public static native void decomposeEssentialMat( @ByVal Mat E, @ByVal Mat R1, @ByVal Mat R2, @ByVal Mat t ); @Namespace("cv") public static native void decomposeEssentialMat( @ByVal UMat E, @ByVal UMat R1, @ByVal UMat R2, @ByVal UMat t ); @Namespace("cv") public static native void decomposeEssentialMat( @ByVal GpuMat E, @ByVal GpuMat R1, @ByVal GpuMat R2, @ByVal GpuMat t ); /** \brief Recover relative camera rotation and translation from an estimated essential matrix and the corresponding points in two images, using cheirality check. Returns the number of inliers which pass the check.

@param E The input essential matrix. @param points1 Array of N 2D points from the first image. The point coordinates should be floating-point (single or double precision). @param points2 Array of the second image points of the same size and format as points1 . @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . Note that this function assumes that points1 and points2 are feature points from cameras with the same camera matrix. @param R Recovered relative rotation. @param t Recovered relative translation. @param mask Input/output mask for inliers in points1 and points2. : If it is not empty, then it marks inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to recover pose. In the output mask only inliers which pass the cheirality check. This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible pose hypotheses by doing cheirality check. The cheirality check basically means that the triangulated 3D points should have positive depth. Some details can be found in \cite Nister03 .

This function can be used to process output E and mask from findEssentialMat. In this scenario, points1 and points2 are the same input for findEssentialMat. :

{@code
    // Example. Estimation of fundamental matrix using the RANSAC algorithm
    int point_count = 100;
    vector points1(point_count);
    vector points2(point_count);

    // initialize the points here ...
    for( int i = 0; i < point_count; i++ )
    {
        points1[i] = ...;
        points2[i] = ...;
    }

    // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);

    Mat E, R, t, mask;

    E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
    recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
}
*/ @Namespace("cv") public static native int recoverPose( @ByVal Mat E, @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat cameraMatrix, @ByVal Mat R, @ByVal Mat t, @ByVal(nullValue = "cv::InputOutputArray(cv::noArray())") Mat mask ); @Namespace("cv") public static native int recoverPose( @ByVal Mat E, @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat cameraMatrix, @ByVal Mat R, @ByVal Mat t ); @Namespace("cv") public static native int recoverPose( @ByVal UMat E, @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat cameraMatrix, @ByVal UMat R, @ByVal UMat t, @ByVal(nullValue = "cv::InputOutputArray(cv::noArray())") UMat mask ); @Namespace("cv") public static native int recoverPose( @ByVal UMat E, @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat cameraMatrix, @ByVal UMat R, @ByVal UMat t ); @Namespace("cv") public static native int recoverPose( @ByVal GpuMat E, @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat cameraMatrix, @ByVal GpuMat R, @ByVal GpuMat t, @ByVal(nullValue = "cv::InputOutputArray(cv::noArray())") GpuMat mask ); @Namespace("cv") public static native int recoverPose( @ByVal GpuMat E, @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat cameraMatrix, @ByVal GpuMat R, @ByVal GpuMat t ); /** \overload @param E The input essential matrix. @param points1 Array of N 2D points from the first image. The point coordinates should be floating-point (single or double precision). @param points2 Array of the second image points of the same size and format as points1 . @param R Recovered relative rotation. @param t Recovered relative translation. @param focal Focal length of the camera. Note that this function assumes that points1 and points2 are feature points from cameras with same focal length and principal point. @param pp principal point of the camera. @param mask Input/output mask for inliers in points1 and points2. : If it is not empty, then it marks inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to recover pose. In the output mask only inliers which pass the cheirality check.

This function differs from the one above that it computes camera matrix from focal length and principal point:

\f[K = \begin{bmatrix} f & 0 & x_{pp} \\ 0 & f & y_{pp} \\ 0 & 0 & 1 \end{bmatrix}\f] */ @Namespace("cv") public static native int recoverPose( @ByVal Mat E, @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat R, @ByVal Mat t, double focal/*=1.0*/, @ByVal(nullValue = "cv::Point2d(0, 0)") Point2d pp, @ByVal(nullValue = "cv::InputOutputArray(cv::noArray())") Mat mask ); @Namespace("cv") public static native int recoverPose( @ByVal Mat E, @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat R, @ByVal Mat t ); @Namespace("cv") public static native int recoverPose( @ByVal UMat E, @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat R, @ByVal UMat t, double focal/*=1.0*/, @ByVal(nullValue = "cv::Point2d(0, 0)") Point2d pp, @ByVal(nullValue = "cv::InputOutputArray(cv::noArray())") UMat mask ); @Namespace("cv") public static native int recoverPose( @ByVal UMat E, @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat R, @ByVal UMat t ); @Namespace("cv") public static native int recoverPose( @ByVal GpuMat E, @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat R, @ByVal GpuMat t, double focal/*=1.0*/, @ByVal(nullValue = "cv::Point2d(0, 0)") Point2d pp, @ByVal(nullValue = "cv::InputOutputArray(cv::noArray())") GpuMat mask ); @Namespace("cv") public static native int recoverPose( @ByVal GpuMat E, @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat R, @ByVal GpuMat t ); /** \overload @param E The input essential matrix. @param points1 Array of N 2D points from the first image. The point coordinates should be floating-point (single or double precision). @param points2 Array of the second image points of the same size and format as points1. @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . Note that this function assumes that points1 and points2 are feature points from cameras with the same camera matrix. @param R Recovered relative rotation. @param t Recovered relative translation. @param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite points). @param mask Input/output mask for inliers in points1 and points2. : If it is not empty, then it marks inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to recover pose. In the output mask only inliers which pass the cheirality check. @param triangulatedPoints 3d points which were reconstructed by triangulation. */ @Namespace("cv") public static native int recoverPose( @ByVal Mat E, @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat cameraMatrix, @ByVal Mat R, @ByVal Mat t, double distanceThresh, @ByVal(nullValue = "cv::InputOutputArray(cv::noArray())") Mat mask, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat triangulatedPoints); @Namespace("cv") public static native int recoverPose( @ByVal Mat E, @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat cameraMatrix, @ByVal Mat R, @ByVal Mat t, double distanceThresh); @Namespace("cv") public static native int recoverPose( @ByVal UMat E, @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat cameraMatrix, @ByVal UMat R, @ByVal UMat t, double distanceThresh, @ByVal(nullValue = "cv::InputOutputArray(cv::noArray())") UMat mask, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat triangulatedPoints); @Namespace("cv") public static native int recoverPose( @ByVal UMat E, @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat cameraMatrix, @ByVal UMat R, @ByVal UMat t, double distanceThresh); @Namespace("cv") public static native int recoverPose( @ByVal GpuMat E, @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat cameraMatrix, @ByVal GpuMat R, @ByVal GpuMat t, double distanceThresh, @ByVal(nullValue = "cv::InputOutputArray(cv::noArray())") GpuMat mask, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat triangulatedPoints); @Namespace("cv") public static native int recoverPose( @ByVal GpuMat E, @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat cameraMatrix, @ByVal GpuMat R, @ByVal GpuMat t, double distanceThresh); /** \brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.

@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or vector\ . @param whichImage Index of the image (1 or 2) that contains the points . @param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify . @param lines Output vector of the epipolar lines corresponding to the points in the other image. Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .

For every point in one of the two images of a stereo pair, the function finds the equation of the corresponding epipolar line in the other image.

From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:

\f[l^{(2)}_i = F p^{(1)}_i\f]

And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:

\f[l^{(1)}_i = F^T p^{(2)}_i\f]

Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ . */ @Namespace("cv") public static native void computeCorrespondEpilines( @ByVal Mat points, int whichImage, @ByVal Mat F, @ByVal Mat lines ); @Namespace("cv") public static native void computeCorrespondEpilines( @ByVal UMat points, int whichImage, @ByVal UMat F, @ByVal UMat lines ); @Namespace("cv") public static native void computeCorrespondEpilines( @ByVal GpuMat points, int whichImage, @ByVal GpuMat F, @ByVal GpuMat lines ); /** \brief Reconstructs points by triangulation.

@param projMatr1 3x4 projection matrix of the first camera. @param projMatr2 3x4 projection matrix of the second camera. @param projPoints1 2xN array of feature points in the first image. In case of c++ version it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1. @param projPoints2 2xN array of corresponding points in the second image. In case of c++ version it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1. @param points4D 4xN array of reconstructed points in homogeneous coordinates.

The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their observations with a stereo camera. Projections matrices can be obtained from stereoRectify.

\note Keep in mind that all input data should be of float type in order for this function to work.

\sa reprojectImageTo3D */ @Namespace("cv") public static native void triangulatePoints( @ByVal Mat projMatr1, @ByVal Mat projMatr2, @ByVal Mat projPoints1, @ByVal Mat projPoints2, @ByVal Mat points4D ); @Namespace("cv") public static native void triangulatePoints( @ByVal UMat projMatr1, @ByVal UMat projMatr2, @ByVal UMat projPoints1, @ByVal UMat projPoints2, @ByVal UMat points4D ); @Namespace("cv") public static native void triangulatePoints( @ByVal GpuMat projMatr1, @ByVal GpuMat projMatr2, @ByVal GpuMat projPoints1, @ByVal GpuMat projPoints2, @ByVal GpuMat points4D ); /** \brief Refines coordinates of corresponding points.

@param F 3x3 fundamental matrix. @param points1 1xN array containing the first set of points. @param points2 1xN array containing the second set of points. @param newPoints1 The optimized points1. @param newPoints2 The optimized points2.

The function implements the Optimal Triangulation Method (see Multiple View Geometry for details). For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint \f$newPoints2^T * F * newPoints1 = 0\f$ . */ @Namespace("cv") public static native void correctMatches( @ByVal Mat F, @ByVal Mat points1, @ByVal Mat points2, @ByVal Mat newPoints1, @ByVal Mat newPoints2 ); @Namespace("cv") public static native void correctMatches( @ByVal UMat F, @ByVal UMat points1, @ByVal UMat points2, @ByVal UMat newPoints1, @ByVal UMat newPoints2 ); @Namespace("cv") public static native void correctMatches( @ByVal GpuMat F, @ByVal GpuMat points1, @ByVal GpuMat points2, @ByVal GpuMat newPoints1, @ByVal GpuMat newPoints2 ); /** \brief Filters off small noise blobs (speckles) in the disparity map

@param img The input 16-bit signed disparity image @param newVal The disparity value used to paint-off the speckles @param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not affected by the algorithm @param maxDiff Maximum difference between neighbor disparity pixels to put them into the same blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point disparity map, where disparity values are multiplied by 16, this scale factor should be taken into account when specifying this parameter value. @param buf The optional temporary buffer to avoid memory allocation within the function. */ @Namespace("cv") public static native void filterSpeckles( @ByVal Mat img, double newVal, int maxSpeckleSize, double maxDiff, @ByVal(nullValue = "cv::InputOutputArray(cv::noArray())") Mat buf ); @Namespace("cv") public static native void filterSpeckles( @ByVal Mat img, double newVal, int maxSpeckleSize, double maxDiff ); @Namespace("cv") public static native void filterSpeckles( @ByVal UMat img, double newVal, int maxSpeckleSize, double maxDiff, @ByVal(nullValue = "cv::InputOutputArray(cv::noArray())") UMat buf ); @Namespace("cv") public static native void filterSpeckles( @ByVal UMat img, double newVal, int maxSpeckleSize, double maxDiff ); @Namespace("cv") public static native void filterSpeckles( @ByVal GpuMat img, double newVal, int maxSpeckleSize, double maxDiff, @ByVal(nullValue = "cv::InputOutputArray(cv::noArray())") GpuMat buf ); @Namespace("cv") public static native void filterSpeckles( @ByVal GpuMat img, double newVal, int maxSpeckleSize, double maxDiff ); /** computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify()) */ @Namespace("cv") public static native @ByVal Rect getValidDisparityROI( @ByVal Rect roi1, @ByVal Rect roi2, int minDisparity, int numberOfDisparities, int SADWindowSize ); /** validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm */ @Namespace("cv") public static native void validateDisparity( @ByVal Mat disparity, @ByVal Mat cost, int minDisparity, int numberOfDisparities, int disp12MaxDisp/*=1*/ ); @Namespace("cv") public static native void validateDisparity( @ByVal Mat disparity, @ByVal Mat cost, int minDisparity, int numberOfDisparities ); @Namespace("cv") public static native void validateDisparity( @ByVal UMat disparity, @ByVal UMat cost, int minDisparity, int numberOfDisparities, int disp12MaxDisp/*=1*/ ); @Namespace("cv") public static native void validateDisparity( @ByVal UMat disparity, @ByVal UMat cost, int minDisparity, int numberOfDisparities ); @Namespace("cv") public static native void validateDisparity( @ByVal GpuMat disparity, @ByVal GpuMat cost, int minDisparity, int numberOfDisparities, int disp12MaxDisp/*=1*/ ); @Namespace("cv") public static native void validateDisparity( @ByVal GpuMat disparity, @ByVal GpuMat cost, int minDisparity, int numberOfDisparities ); /** \brief Reprojects a disparity image to 3D space.

@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no fractional bits. @param _3dImage Output 3-channel floating-point image of the same size as disparity . Each element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. @param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify. @param handleMissingValues Indicates, whether the function should handle missing values (i.e. points where the disparity was not computed). If handleMissingValues=true, then pixels with the minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed to 3D points with a very large Z value (currently set to 10000). @param ddepth The optional output array depth. If it is -1, the output image will have CV_32F depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.

The function transforms a single-channel disparity map to a 3-channel image representing a 3D surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it computes:

\f[\begin{array}{l} [X \; Y \; Z \; W]^T = \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f]

The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform . */ @Namespace("cv") public static native void reprojectImageTo3D( @ByVal Mat disparity, @ByVal Mat _3dImage, @ByVal Mat Q, @Cast("bool") boolean handleMissingValues/*=false*/, int ddepth/*=-1*/ ); @Namespace("cv") public static native void reprojectImageTo3D( @ByVal Mat disparity, @ByVal Mat _3dImage, @ByVal Mat Q ); @Namespace("cv") public static native void reprojectImageTo3D( @ByVal UMat disparity, @ByVal UMat _3dImage, @ByVal UMat Q, @Cast("bool") boolean handleMissingValues/*=false*/, int ddepth/*=-1*/ ); @Namespace("cv") public static native void reprojectImageTo3D( @ByVal UMat disparity, @ByVal UMat _3dImage, @ByVal UMat Q ); @Namespace("cv") public static native void reprojectImageTo3D( @ByVal GpuMat disparity, @ByVal GpuMat _3dImage, @ByVal GpuMat Q, @Cast("bool") boolean handleMissingValues/*=false*/, int ddepth/*=-1*/ ); @Namespace("cv") public static native void reprojectImageTo3D( @ByVal GpuMat disparity, @ByVal GpuMat _3dImage, @ByVal GpuMat Q ); /** \brief Calculates the Sampson Distance between two points.

The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as: \f[ sd( \texttt{pt1} , \texttt{pt2} )= \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2} {((\texttt{F} \cdot \texttt{pt1})(0))^2 + ((\texttt{F} \cdot \texttt{pt1})(1))^2 + ((\texttt{F}^t \cdot \texttt{pt2})(0))^2 + ((\texttt{F}^t \cdot \texttt{pt2})(1))^2} \f] The fundamental matrix may be calculated using the cv::findFundamentalMat function. See \cite HartleyZ00 11.4.3 for details. @param pt1 first homogeneous 2d point @param pt2 second homogeneous 2d point @param F fundamental matrix @return The computed Sampson distance. */ @Namespace("cv") public static native double sampsonDistance(@ByVal Mat pt1, @ByVal Mat pt2, @ByVal Mat F); @Namespace("cv") public static native double sampsonDistance(@ByVal UMat pt1, @ByVal UMat pt2, @ByVal UMat F); @Namespace("cv") public static native double sampsonDistance(@ByVal GpuMat pt1, @ByVal GpuMat pt2, @ByVal GpuMat F); /** \brief Computes an optimal affine transformation between two 3D point sets.

It computes \f[ \begin{bmatrix} x\\ y\\ z\\ \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\\ \end{bmatrix} \begin{bmatrix} X\\ Y\\ Z\\ \end{bmatrix} + \begin{bmatrix} b_1\\ b_2\\ b_3\\ \end{bmatrix} \f]

@param src First input 3D point set containing \f$(X,Y,Z)\f$. @param dst Second input 3D point set containing \f$(x,y,z)\f$. @param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form \f[ \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1\\ a_{21} & a_{22} & a_{23} & b_2\\ a_{31} & a_{32} & a_{33} & b_3\\ \end{bmatrix} \f] @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier). @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as an inlier. @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.

The function estimates an optimal 3D affine transformation between two 3D point sets using the RANSAC algorithm. */ @Namespace("cv") public static native int estimateAffine3D(@ByVal Mat src, @ByVal Mat dst, @ByVal Mat out, @ByVal Mat inliers, double ransacThreshold/*=3*/, double confidence/*=0.99*/); @Namespace("cv") public static native int estimateAffine3D(@ByVal Mat src, @ByVal Mat dst, @ByVal Mat out, @ByVal Mat inliers); @Namespace("cv") public static native int estimateAffine3D(@ByVal UMat src, @ByVal UMat dst, @ByVal UMat out, @ByVal UMat inliers, double ransacThreshold/*=3*/, double confidence/*=0.99*/); @Namespace("cv") public static native int estimateAffine3D(@ByVal UMat src, @ByVal UMat dst, @ByVal UMat out, @ByVal UMat inliers); @Namespace("cv") public static native int estimateAffine3D(@ByVal GpuMat src, @ByVal GpuMat dst, @ByVal GpuMat out, @ByVal GpuMat inliers, double ransacThreshold/*=3*/, double confidence/*=0.99*/); @Namespace("cv") public static native int estimateAffine3D(@ByVal GpuMat src, @ByVal GpuMat dst, @ByVal GpuMat out, @ByVal GpuMat inliers); /** \brief Computes an optimal affine transformation between two 2D point sets.

It computes \f[ \begin{bmatrix} x\\ y\\ \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12}\\ a_{21} & a_{22}\\ \end{bmatrix} \begin{bmatrix} X\\ Y\\ \end{bmatrix} + \begin{bmatrix} b_1\\ b_2\\ \end{bmatrix} \f]

@param from First input 2D point set containing \f$(X,Y)\f$. @param to Second input 2D point set containing \f$(x,y)\f$. @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier). @param method Robust method used to compute transformation. The following methods are possible: - cv::RANSAC - RANSAC-based robust method - cv::LMEDS - Least-Median robust method RANSAC is the default method. @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as an inlier. Applies only to RANSAC. @param maxIters The maximum number of robust method iterations. @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). Passing 0 will disable refining, so the output matrix will be output of robust method.

@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation could not be estimated. The returned matrix has the following form: \f[ \begin{bmatrix} a_{11} & a_{12} & b_1\\ a_{21} & a_{22} & b_2\\ \end{bmatrix} \f]

The function estimates an optimal 2D affine transformation between two 2D point sets using the selected robust algorithm.

The computed transformation is then refined further (using only inliers) with the Levenberg-Marquardt method to reduce the re-projection error even more.

\note The RANSAC method can handle practically any ratio of outliers but needs a threshold to distinguish inliers from outliers. The method LMeDS does not need any threshold but it works correctly only when there are more than 50% of inliers.

\sa estimateAffinePartial2D, getAffineTransform */ @Namespace("cv") public static native @ByVal Mat estimateAffine2D(@ByVal Mat from, @ByVal Mat to, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat inliers, int method/*=cv::RANSAC*/, double ransacReprojThreshold/*=3*/, @Cast("size_t") long maxIters/*=2000*/, double confidence/*=0.99*/, @Cast("size_t") long refineIters/*=10*/); @Namespace("cv") public static native @ByVal Mat estimateAffine2D(@ByVal Mat from, @ByVal Mat to); @Namespace("cv") public static native @ByVal Mat estimateAffine2D(@ByVal UMat from, @ByVal UMat to, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat inliers, int method/*=cv::RANSAC*/, double ransacReprojThreshold/*=3*/, @Cast("size_t") long maxIters/*=2000*/, double confidence/*=0.99*/, @Cast("size_t") long refineIters/*=10*/); @Namespace("cv") public static native @ByVal Mat estimateAffine2D(@ByVal UMat from, @ByVal UMat to); @Namespace("cv") public static native @ByVal Mat estimateAffine2D(@ByVal GpuMat from, @ByVal GpuMat to, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat inliers, int method/*=cv::RANSAC*/, double ransacReprojThreshold/*=3*/, @Cast("size_t") long maxIters/*=2000*/, double confidence/*=0.99*/, @Cast("size_t") long refineIters/*=10*/); @Namespace("cv") public static native @ByVal Mat estimateAffine2D(@ByVal GpuMat from, @ByVal GpuMat to); /** \brief Computes an optimal limited affine transformation with 4 degrees of freedom between two 2D point sets.

@param from First input 2D point set. @param to Second input 2D point set. @param inliers Output vector indicating which points are inliers. @param method Robust method used to compute transformation. The following methods are possible: - cv::RANSAC - RANSAC-based robust method - cv::LMEDS - Least-Median robust method RANSAC is the default method. @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as an inlier. Applies only to RANSAC. @param maxIters The maximum number of robust method iterations. @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). Passing 0 will disable refining, so the output matrix will be output of robust method.

@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or empty matrix if transformation could not be estimated.

The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust estimation.

The computed transformation is then refined further (using only inliers) with the Levenberg-Marquardt method to reduce the re-projection error even more.

Estimated transformation matrix is: \f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\ \sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y \end{bmatrix} \f] Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are translations in \f$ x, y \f$ axes respectively.

\note The RANSAC method can handle practically any ratio of outliers but need a threshold to distinguish inliers from outliers. The method LMeDS does not need any threshold but it works correctly only when there are more than 50% of inliers.

\sa estimateAffine2D, getAffineTransform */ @Namespace("cv") public static native @ByVal Mat estimateAffinePartial2D(@ByVal Mat from, @ByVal Mat to, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat inliers, int method/*=cv::RANSAC*/, double ransacReprojThreshold/*=3*/, @Cast("size_t") long maxIters/*=2000*/, double confidence/*=0.99*/, @Cast("size_t") long refineIters/*=10*/); @Namespace("cv") public static native @ByVal Mat estimateAffinePartial2D(@ByVal Mat from, @ByVal Mat to); @Namespace("cv") public static native @ByVal Mat estimateAffinePartial2D(@ByVal UMat from, @ByVal UMat to, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat inliers, int method/*=cv::RANSAC*/, double ransacReprojThreshold/*=3*/, @Cast("size_t") long maxIters/*=2000*/, double confidence/*=0.99*/, @Cast("size_t") long refineIters/*=10*/); @Namespace("cv") public static native @ByVal Mat estimateAffinePartial2D(@ByVal UMat from, @ByVal UMat to); @Namespace("cv") public static native @ByVal Mat estimateAffinePartial2D(@ByVal GpuMat from, @ByVal GpuMat to, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat inliers, int method/*=cv::RANSAC*/, double ransacReprojThreshold/*=3*/, @Cast("size_t") long maxIters/*=2000*/, double confidence/*=0.99*/, @Cast("size_t") long refineIters/*=10*/); @Namespace("cv") public static native @ByVal Mat estimateAffinePartial2D(@ByVal GpuMat from, @ByVal GpuMat to); /** \example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp An example program with homography decomposition.

Check \ref tutorial_homography "the corresponding tutorial" for more details. */ /** \brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).

@param H The input homography matrix between two images. @param K The input intrinsic camera calibration matrix. @param rotations Array of rotation matrices. @param translations Array of translation matrices. @param normals Array of plane normal matrices.

This function extracts relative camera motion between two views observing a planar object from the homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function may return up to four mathematical solution sets. At least two of the solutions may further be invalidated if point correspondences are available by applying positive depth constraint (all points must be in front of the camera). The decomposition method is described in detail in \cite Malis . */ @Namespace("cv") public static native int decomposeHomographyMat(@ByVal Mat H, @ByVal Mat K, @ByVal MatVector rotations, @ByVal MatVector translations, @ByVal MatVector normals); @Namespace("cv") public static native int decomposeHomographyMat(@ByVal Mat H, @ByVal Mat K, @ByVal UMatVector rotations, @ByVal UMatVector translations, @ByVal UMatVector normals); @Namespace("cv") public static native int decomposeHomographyMat(@ByVal Mat H, @ByVal Mat K, @ByVal GpuMatVector rotations, @ByVal GpuMatVector translations, @ByVal GpuMatVector normals); @Namespace("cv") public static native int decomposeHomographyMat(@ByVal UMat H, @ByVal UMat K, @ByVal MatVector rotations, @ByVal MatVector translations, @ByVal MatVector normals); @Namespace("cv") public static native int decomposeHomographyMat(@ByVal UMat H, @ByVal UMat K, @ByVal UMatVector rotations, @ByVal UMatVector translations, @ByVal UMatVector normals); @Namespace("cv") public static native int decomposeHomographyMat(@ByVal UMat H, @ByVal UMat K, @ByVal GpuMatVector rotations, @ByVal GpuMatVector translations, @ByVal GpuMatVector normals); @Namespace("cv") public static native int decomposeHomographyMat(@ByVal GpuMat H, @ByVal GpuMat K, @ByVal MatVector rotations, @ByVal MatVector translations, @ByVal MatVector normals); @Namespace("cv") public static native int decomposeHomographyMat(@ByVal GpuMat H, @ByVal GpuMat K, @ByVal UMatVector rotations, @ByVal UMatVector translations, @ByVal UMatVector normals); @Namespace("cv") public static native int decomposeHomographyMat(@ByVal GpuMat H, @ByVal GpuMat K, @ByVal GpuMatVector rotations, @ByVal GpuMatVector translations, @ByVal GpuMatVector normals); /** \brief Filters homography decompositions based on additional information.

@param rotations Vector of rotation matrices. @param normals Vector of plane normal matrices. @param beforePoints Vector of (rectified) visible reference points before the homography is applied @param afterPoints Vector of (rectified) visible reference points after the homography is applied @param possibleSolutions Vector of int indices representing the viable solution set after filtering @param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the findHomography function

This function is intended to filter the output of the decomposeHomographyMat based on additional information as described in \cite Malis . The summary of the method: the decomposeHomographyMat function returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the sets of points visible in the camera frame before and after the homography transformation is applied, we can determine which are the true potential solutions and which are the opposites by verifying which homographies are consistent with all visible reference points being in front of the camera. The inputs are left unchanged; the filtered solution set is returned as indices into the existing one.

*/ @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal MatVector rotations, @ByVal MatVector normals, @ByVal Mat beforePoints, @ByVal Mat afterPoints, @ByVal Mat possibleSolutions, @ByVal(nullValue = "cv::InputArray(cv::noArray())") Mat pointsMask); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal MatVector rotations, @ByVal MatVector normals, @ByVal Mat beforePoints, @ByVal Mat afterPoints, @ByVal Mat possibleSolutions); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal UMatVector rotations, @ByVal UMatVector normals, @ByVal Mat beforePoints, @ByVal Mat afterPoints, @ByVal Mat possibleSolutions, @ByVal(nullValue = "cv::InputArray(cv::noArray())") Mat pointsMask); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal UMatVector rotations, @ByVal UMatVector normals, @ByVal Mat beforePoints, @ByVal Mat afterPoints, @ByVal Mat possibleSolutions); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal GpuMatVector rotations, @ByVal GpuMatVector normals, @ByVal Mat beforePoints, @ByVal Mat afterPoints, @ByVal Mat possibleSolutions, @ByVal(nullValue = "cv::InputArray(cv::noArray())") Mat pointsMask); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal GpuMatVector rotations, @ByVal GpuMatVector normals, @ByVal Mat beforePoints, @ByVal Mat afterPoints, @ByVal Mat possibleSolutions); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal MatVector rotations, @ByVal MatVector normals, @ByVal UMat beforePoints, @ByVal UMat afterPoints, @ByVal UMat possibleSolutions, @ByVal(nullValue = "cv::InputArray(cv::noArray())") UMat pointsMask); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal MatVector rotations, @ByVal MatVector normals, @ByVal UMat beforePoints, @ByVal UMat afterPoints, @ByVal UMat possibleSolutions); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal UMatVector rotations, @ByVal UMatVector normals, @ByVal UMat beforePoints, @ByVal UMat afterPoints, @ByVal UMat possibleSolutions, @ByVal(nullValue = "cv::InputArray(cv::noArray())") UMat pointsMask); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal UMatVector rotations, @ByVal UMatVector normals, @ByVal UMat beforePoints, @ByVal UMat afterPoints, @ByVal UMat possibleSolutions); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal GpuMatVector rotations, @ByVal GpuMatVector normals, @ByVal UMat beforePoints, @ByVal UMat afterPoints, @ByVal UMat possibleSolutions, @ByVal(nullValue = "cv::InputArray(cv::noArray())") UMat pointsMask); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal GpuMatVector rotations, @ByVal GpuMatVector normals, @ByVal UMat beforePoints, @ByVal UMat afterPoints, @ByVal UMat possibleSolutions); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal MatVector rotations, @ByVal MatVector normals, @ByVal GpuMat beforePoints, @ByVal GpuMat afterPoints, @ByVal GpuMat possibleSolutions, @ByVal(nullValue = "cv::InputArray(cv::noArray())") GpuMat pointsMask); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal MatVector rotations, @ByVal MatVector normals, @ByVal GpuMat beforePoints, @ByVal GpuMat afterPoints, @ByVal GpuMat possibleSolutions); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal UMatVector rotations, @ByVal UMatVector normals, @ByVal GpuMat beforePoints, @ByVal GpuMat afterPoints, @ByVal GpuMat possibleSolutions, @ByVal(nullValue = "cv::InputArray(cv::noArray())") GpuMat pointsMask); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal UMatVector rotations, @ByVal UMatVector normals, @ByVal GpuMat beforePoints, @ByVal GpuMat afterPoints, @ByVal GpuMat possibleSolutions); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal GpuMatVector rotations, @ByVal GpuMatVector normals, @ByVal GpuMat beforePoints, @ByVal GpuMat afterPoints, @ByVal GpuMat possibleSolutions, @ByVal(nullValue = "cv::InputArray(cv::noArray())") GpuMat pointsMask); @Namespace("cv") public static native void filterHomographyDecompByVisibleRefpoints(@ByVal GpuMatVector rotations, @ByVal GpuMatVector normals, @ByVal GpuMat beforePoints, @ByVal GpuMat afterPoints, @ByVal GpuMat possibleSolutions); /** \brief The base class for stereo correspondence algorithms. */ @Namespace("cv") public static class StereoMatcher extends Algorithm { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ public StereoMatcher(Pointer p) { super(p); } /** enum cv::StereoMatcher:: */ public static final int DISP_SHIFT = 4, DISP_SCALE = (1 << DISP_SHIFT); /** \brief Computes disparity map for the specified stereo pair

@param left Left 8-bit single-channel image. @param right Right image of the same size and the same type as the left one. @param disparity Output disparity map. It has the same size as the input images. Some algorithms, like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map. */ public native void compute( @ByVal Mat left, @ByVal Mat right, @ByVal Mat disparity ); public native void compute( @ByVal UMat left, @ByVal UMat right, @ByVal UMat disparity ); public native void compute( @ByVal GpuMat left, @ByVal GpuMat right, @ByVal GpuMat disparity ); public native int getMinDisparity(); public native void setMinDisparity(int minDisparity); public native int getNumDisparities(); public native void setNumDisparities(int numDisparities); public native int getBlockSize(); public native void setBlockSize(int blockSize); public native int getSpeckleWindowSize(); public native void setSpeckleWindowSize(int speckleWindowSize); public native int getSpeckleRange(); public native void setSpeckleRange(int speckleRange); public native int getDisp12MaxDiff(); public native void setDisp12MaxDiff(int disp12MaxDiff); } /** \brief Class for computing stereo correspondence using the block matching algorithm, introduced and contributed to OpenCV by K. Konolige. */ @Namespace("cv") public static class StereoBM extends StereoMatcher { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ public StereoBM(Pointer p) { super(p); } /** enum cv::StereoBM:: */ public static final int PREFILTER_NORMALIZED_RESPONSE = 0, PREFILTER_XSOBEL = 1; public native int getPreFilterType(); public native void setPreFilterType(int preFilterType); public native int getPreFilterSize(); public native void setPreFilterSize(int preFilterSize); public native int getPreFilterCap(); public native void setPreFilterCap(int preFilterCap); public native int getTextureThreshold(); public native void setTextureThreshold(int textureThreshold); public native int getUniquenessRatio(); public native void setUniquenessRatio(int uniquenessRatio); public native int getSmallerBlockSize(); public native void setSmallerBlockSize(int blockSize); public native @ByVal Rect getROI1(); public native void setROI1(@ByVal Rect roi1); public native @ByVal Rect getROI2(); public native void setROI2(@ByVal Rect roi2); /** \brief Creates StereoBM object

@param numDisparities the disparity search range. For each pixel algorithm will find the best disparity from 0 (default minimum disparity) to numDisparities. The search range can then be shifted by changing the minimum disparity. @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd (as the block is centered at the current pixel). Larger block size implies smoother, though less accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher chance for algorithm to find a wrong correspondence.

The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for a specific stereo pair. */ public static native @Ptr StereoBM create(int numDisparities/*=0*/, int blockSize/*=21*/); public static native @Ptr StereoBM create(); } /** \brief The class implements the modified H. Hirschmuller algorithm \cite HH08 that differs from the original one as follows:

- By default, the algorithm is single-pass, which means that you consider only 5 directions instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the algorithm but beware that it may consume a lot of memory. - The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the blocks to single pixels. - Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi sub-pixel metric from \cite BT98 is used. Though, the color images are supported as well. - Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness check, quadratic interpolation and speckle filtering).

\note - (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found at opencv_source_code/samples/python/stereo_match.py */ @Namespace("cv") public static class StereoSGBM extends StereoMatcher { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ public StereoSGBM(Pointer p) { super(p); } /** enum cv::StereoSGBM:: */ public static final int MODE_SGBM = 0, MODE_HH = 1, MODE_SGBM_3WAY = 2, MODE_HH4 = 3; public native int getPreFilterCap(); public native void setPreFilterCap(int preFilterCap); public native int getUniquenessRatio(); public native void setUniquenessRatio(int uniquenessRatio); public native int getP1(); public native void setP1(int P1); public native int getP2(); public native void setP2(int P2); public native int getMode(); public native void setMode(int mode); /** \brief Creates StereoSGBM object

@param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes rectification algorithms can shift images, so this parameter needs to be adjusted accordingly. @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than zero. In the current implementation, this parameter must be divisible by 16. @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be somewhere in the 3..11 range. @param P1 The first parameter controlling the disparity smoothness. See below. @param P2 The second parameter controlling the disparity smoothness. The larger the values are, the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1 between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and 32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively). @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right disparity check. Set it to a non-positive value to disable the check. @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval. The result values are passed to the Birchfield-Tomasi pixel cost function. @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function value should "win" the second best value to consider the found match correct. Normally, a value within the 5-15 range is good enough. @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the 50-200 range. @param speckleRange Maximum disparity variation within each connected component. If you do speckle filtering, set the parameter to a positive value, it will be implicitly multiplied by 16. Normally, 1 or 2 is good enough. @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and huge for HD-size pictures. By default, it is set to false .

The first constructor initializes StereoSGBM with all the default parameters. So, you only have to set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter to a custom value. */ public static native @Ptr StereoSGBM create(int minDisparity/*=0*/, int numDisparities/*=16*/, int blockSize/*=3*/, int P1/*=0*/, int P2/*=0*/, int disp12MaxDiff/*=0*/, int preFilterCap/*=0*/, int uniquenessRatio/*=0*/, int speckleWindowSize/*=0*/, int speckleRange/*=0*/, int mode/*=cv::StereoSGBM::MODE_SGBM*/); public static native @Ptr StereoSGBM create(); } /** cv::undistort mode */ /** enum cv::UndistortTypes */ public static final int PROJ_SPHERICAL_ORTHO = 0, PROJ_SPHERICAL_EQRECT = 1; /** \brief Transforms an image to compensate for lens distortion.

The function transforms an image to compensate radial and tangential lens distortion.

The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap (with bilinear interpolation). See the former function for details of the transformation being performed.

Those pixels in the destination image, for which there is no correspondent pixels in the source image, are filled with zeros (black color).

A particular subset of the source image that will be visible in the corrected image can be regulated by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate newCameraMatrix depending on your requirements.

The camera matrix and the distortion parameters can be determined using #calibrateCamera. If the resolution of images is different from the resolution used at the calibration stage, \f$f_x, f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain the same.

@param src Input (distorted) image. @param dst Output (corrected) image that has the same size and type as src . @param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . @param distCoeffs Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. @param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as cameraMatrix but you may additionally scale and shift the result by using a different matrix. */ @Namespace("cv") public static native void undistort( @ByVal Mat src, @ByVal Mat dst, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal(nullValue = "cv::InputArray(cv::noArray())") Mat newCameraMatrix ); @Namespace("cv") public static native void undistort( @ByVal Mat src, @ByVal Mat dst, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs ); @Namespace("cv") public static native void undistort( @ByVal UMat src, @ByVal UMat dst, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal(nullValue = "cv::InputArray(cv::noArray())") UMat newCameraMatrix ); @Namespace("cv") public static native void undistort( @ByVal UMat src, @ByVal UMat dst, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs ); @Namespace("cv") public static native void undistort( @ByVal GpuMat src, @ByVal GpuMat dst, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal(nullValue = "cv::InputArray(cv::noArray())") GpuMat newCameraMatrix ); @Namespace("cv") public static native void undistort( @ByVal GpuMat src, @ByVal GpuMat dst, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs ); /** \brief Computes the undistortion and rectification transformation map.

The function computes the joint undistortion and rectification transformation and represents the result in the form of maps for remap. The undistorted image looks like original, as if it is captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by #getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera, newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .

Also, this new camera is oriented differently in the coordinate space, according to R. That, for example, helps to align two heads of a stereo camera so that the epipolar lines on both images become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).

The function actually builds the maps for the inverse mapping algorithm that is used by remap. That is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function computes the corresponding coordinates in the source image (that is, in the original image from camera). The following process is applied: \f[ \begin{array}{l} x \leftarrow (u - {c'}_x)/{f'}_x \\ y \leftarrow (v - {c'}_y)/{f'}_y \\ {[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\ x' \leftarrow X/W \\ y' \leftarrow Y/W \\ r^2 \leftarrow x'^2 + y'^2 \\ x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\ y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\ s\vecthree{x'''}{y'''}{1} = \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)} {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\ map_x(u,v) \leftarrow x''' f_x + c_x \\ map_y(u,v) \leftarrow y''' f_y + c_y \end{array} \f] where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ are the distortion coefficients.

In case of a stereo camera, this function is called twice: once for each camera head, after stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera was not calibrated, it is still possible to compute the rectification transformations directly from the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D space. R can be computed from H as \f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f] where cameraMatrix can be chosen arbitrarily.

@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . @param distCoeffs Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. @param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 , computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation is assumed. In cvInitUndistortMap R assumed to be an identity matrix. @param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$. @param size Undistorted image size. @param m1type Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps @param map1 The first output map. @param map2 The second output map. */ @Namespace("cv") public static native void initUndistortRectifyMap(@ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Mat R, @ByVal Mat newCameraMatrix, @ByVal Size size, int m1type, @ByVal Mat map1, @ByVal Mat map2); @Namespace("cv") public static native void initUndistortRectifyMap(@ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal UMat R, @ByVal UMat newCameraMatrix, @ByVal Size size, int m1type, @ByVal UMat map1, @ByVal UMat map2); @Namespace("cv") public static native void initUndistortRectifyMap(@ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal GpuMat R, @ByVal GpuMat newCameraMatrix, @ByVal Size size, int m1type, @ByVal GpuMat map1, @ByVal GpuMat map2); /** initializes maps for #remap for wide-angle */ @Namespace("cv") public static native float initWideAngleProjMap(@ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Size imageSize, int destImageWidth, int m1type, @ByVal Mat map1, @ByVal Mat map2, @Cast("cv::UndistortTypes") int projType/*=cv::PROJ_SPHERICAL_EQRECT*/, double alpha/*=0*/); @Namespace("cv") public static native float initWideAngleProjMap(@ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Size imageSize, int destImageWidth, int m1type, @ByVal Mat map1, @ByVal Mat map2); @Namespace("cv") public static native float initWideAngleProjMap(@ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal Size imageSize, int destImageWidth, int m1type, @ByVal UMat map1, @ByVal UMat map2, @Cast("cv::UndistortTypes") int projType/*=cv::PROJ_SPHERICAL_EQRECT*/, double alpha/*=0*/); @Namespace("cv") public static native float initWideAngleProjMap(@ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal Size imageSize, int destImageWidth, int m1type, @ByVal UMat map1, @ByVal UMat map2); @Namespace("cv") public static native float initWideAngleProjMap(@ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal Size imageSize, int destImageWidth, int m1type, @ByVal GpuMat map1, @ByVal GpuMat map2, @Cast("cv::UndistortTypes") int projType/*=cv::PROJ_SPHERICAL_EQRECT*/, double alpha/*=0*/); @Namespace("cv") public static native float initWideAngleProjMap(@ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal Size imageSize, int destImageWidth, int m1type, @ByVal GpuMat map1, @ByVal GpuMat map2); @Namespace("cv") public static native float initWideAngleProjMap(@ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Size imageSize, int destImageWidth, int m1type, @ByVal Mat map1, @ByVal Mat map2, int projType); @Namespace("cv") public static native float initWideAngleProjMap(@ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal Size imageSize, int destImageWidth, int m1type, @ByVal UMat map1, @ByVal UMat map2, int projType); @Namespace("cv") public static native float initWideAngleProjMap(@ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal Size imageSize, int destImageWidth, int m1type, @ByVal GpuMat map1, @ByVal GpuMat map2, int projType); /** \brief Returns the default new camera matrix.

The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).

In the latter case, the new camera matrix will be:

\f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5 \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5 \\ 0 && 0 && 1 \end{bmatrix} ,\f]

where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.

By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not move the principal point. However, when you work with stereo, it is important to move the principal points in both views to the same y-coordinate (which is required by most of stereo correspondence algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for each view where the principal points are located at the center.

@param cameraMatrix Input camera matrix. @param imgsize Camera view image size in pixels. @param centerPrincipalPoint Location of the principal point in the new camera matrix. The parameter indicates whether this location should be at the image center or not. */ @Namespace("cv") public static native @ByVal Mat getDefaultNewCameraMatrix(@ByVal Mat cameraMatrix, @ByVal(nullValue = "cv::Size()") Size imgsize, @Cast("bool") boolean centerPrincipalPoint/*=false*/); @Namespace("cv") public static native @ByVal Mat getDefaultNewCameraMatrix(@ByVal Mat cameraMatrix); @Namespace("cv") public static native @ByVal Mat getDefaultNewCameraMatrix(@ByVal UMat cameraMatrix, @ByVal(nullValue = "cv::Size()") Size imgsize, @Cast("bool") boolean centerPrincipalPoint/*=false*/); @Namespace("cv") public static native @ByVal Mat getDefaultNewCameraMatrix(@ByVal UMat cameraMatrix); @Namespace("cv") public static native @ByVal Mat getDefaultNewCameraMatrix(@ByVal GpuMat cameraMatrix, @ByVal(nullValue = "cv::Size()") Size imgsize, @Cast("bool") boolean centerPrincipalPoint/*=false*/); @Namespace("cv") public static native @ByVal Mat getDefaultNewCameraMatrix(@ByVal GpuMat cameraMatrix); /** \brief Computes the ideal point coordinates from the observed point coordinates.

The function is similar to #undistort and #initUndistortRectifyMap but it operates on a sparse set of points instead of a raster image. Also the function performs a reverse transformation to projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a planar object, it does, up to a translation vector, if the proper R is specified.

For each observed point coordinate \f$(u, v)\f$ the function computes: \f[ \begin{array}{l} x^{"} \leftarrow (u - c_x)/f_x \\ y^{"} \leftarrow (v - c_y)/f_y \\ (x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\ {[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\ x \leftarrow X/W \\ y \leftarrow Y/W \\ \text{only performed if P is specified:} \\ u' \leftarrow x {f'}_x + {c'}_x \\ v' \leftarrow y {f'}_y + {c'}_y \end{array} \f]

where *undistort* is an approximate iterative algorithm that estimates the normalized original point coordinates out of the normalized distorted point coordinates ("normalized" means that the coordinates do not depend on the camera matrix).

The function can be used for both a stereo camera head or a monocular camera (when R is empty).

@param src Observed point coordinates, 1xN or Nx1 2-channel (CV_32FC2 or CV_64FC2). @param dst Output ideal point coordinates after undistortion and reverse perspective transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates. @param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . @param distCoeffs Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. @param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation is used. @param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by #stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used. */ @Namespace("cv") public static native void undistortPoints(@ByVal Mat src, @ByVal Mat dst, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal(nullValue = "cv::InputArray(cv::noArray())") Mat R, @ByVal(nullValue = "cv::InputArray(cv::noArray())") Mat P); @Namespace("cv") public static native void undistortPoints(@ByVal Mat src, @ByVal Mat dst, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs); @Namespace("cv") public static native void undistortPoints(@ByVal UMat src, @ByVal UMat dst, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal(nullValue = "cv::InputArray(cv::noArray())") UMat R, @ByVal(nullValue = "cv::InputArray(cv::noArray())") UMat P); @Namespace("cv") public static native void undistortPoints(@ByVal UMat src, @ByVal UMat dst, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs); @Namespace("cv") public static native void undistortPoints(@ByVal GpuMat src, @ByVal GpuMat dst, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal(nullValue = "cv::InputArray(cv::noArray())") GpuMat R, @ByVal(nullValue = "cv::InputArray(cv::noArray())") GpuMat P); @Namespace("cv") public static native void undistortPoints(@ByVal GpuMat src, @ByVal GpuMat dst, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs); /** \overload \note Default version of #undistortPoints does 5 iterations to compute undistorted points. */ @Namespace("cv") public static native @Name("undistortPoints") void undistortPointsIter(@ByVal Mat src, @ByVal Mat dst, @ByVal Mat cameraMatrix, @ByVal Mat distCoeffs, @ByVal Mat R, @ByVal Mat P, @ByVal TermCriteria criteria); @Namespace("cv") public static native @Name("undistortPoints") void undistortPointsIter(@ByVal UMat src, @ByVal UMat dst, @ByVal UMat cameraMatrix, @ByVal UMat distCoeffs, @ByVal UMat R, @ByVal UMat P, @ByVal TermCriteria criteria); @Namespace("cv") public static native @Name("undistortPoints") void undistortPointsIter(@ByVal GpuMat src, @ByVal GpuMat dst, @ByVal GpuMat cameraMatrix, @ByVal GpuMat distCoeffs, @ByVal GpuMat R, @ByVal GpuMat P, @ByVal TermCriteria criteria); /** \} calib3d

/** \brief The methods in this namespace use a so-called fisheye camera model. \ingroup calib3d_fisheye */ /** \addtogroup calib3d_fisheye * \{ */ /** enum cv::fisheye:: */ public static final int FISHEYE_CALIB_USE_INTRINSIC_GUESS = 1 << 0, FISHEYE_CALIB_RECOMPUTE_EXTRINSIC = 1 << 1, FISHEYE_CALIB_CHECK_COND = 1 << 2, FISHEYE_CALIB_FIX_SKEW = 1 << 3, FISHEYE_CALIB_FIX_K1 = 1 << 4, FISHEYE_CALIB_FIX_K2 = 1 << 5, FISHEYE_CALIB_FIX_K3 = 1 << 6, FISHEYE_CALIB_FIX_K4 = 1 << 7, FISHEYE_CALIB_FIX_INTRINSIC = 1 << 8, FISHEYE_CALIB_FIX_PRINCIPAL_POINT = 1 << 9; /** \brief Projects points using fisheye model

@param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\ ), where N is the number of points in the view. @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or vector\. @param affine @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. @param alpha The skew coefficient. @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect to components of the focal lengths, coordinates of the principal point, distortion coefficients, rotation vector, translation vector, and the skew. In the old interface different components of the jacobian are returned via different output parameters.

The function computes projections of 3D points to the image plane given intrinsic and extrinsic camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of image points coordinates (as functions of all the input parameters) with respect to the particular parameters, intrinsic and/or extrinsic. */ @Namespace("cv::fisheye") public static native void projectPoints(@ByVal Mat objectPoints, @ByVal Mat imagePoints, @Const @ByRef Mat affine, @ByVal Mat K, @ByVal Mat D, double alpha/*=0*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat jacobian); @Namespace("cv::fisheye") public static native void projectPoints(@ByVal Mat objectPoints, @ByVal Mat imagePoints, @Const @ByRef Mat affine, @ByVal Mat K, @ByVal Mat D); @Namespace("cv::fisheye") public static native void projectPoints(@ByVal UMat objectPoints, @ByVal UMat imagePoints, @Const @ByRef Mat affine, @ByVal UMat K, @ByVal UMat D, double alpha/*=0*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat jacobian); @Namespace("cv::fisheye") public static native void projectPoints(@ByVal UMat objectPoints, @ByVal UMat imagePoints, @Const @ByRef Mat affine, @ByVal UMat K, @ByVal UMat D); @Namespace("cv::fisheye") public static native void projectPoints(@ByVal GpuMat objectPoints, @ByVal GpuMat imagePoints, @Const @ByRef Mat affine, @ByVal GpuMat K, @ByVal GpuMat D, double alpha/*=0*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat jacobian); @Namespace("cv::fisheye") public static native void projectPoints(@ByVal GpuMat objectPoints, @ByVal GpuMat imagePoints, @Const @ByRef Mat affine, @ByVal GpuMat K, @ByVal GpuMat D); /** \overload */ @Namespace("cv::fisheye") public static native void projectPoints(@ByVal Mat objectPoints, @ByVal Mat imagePoints, @ByVal Mat rvec, @ByVal Mat tvec, @ByVal Mat K, @ByVal Mat D, double alpha/*=0*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat jacobian); @Namespace("cv::fisheye") public static native void projectPoints(@ByVal UMat objectPoints, @ByVal UMat imagePoints, @ByVal UMat rvec, @ByVal UMat tvec, @ByVal UMat K, @ByVal UMat D, double alpha/*=0*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat jacobian); @Namespace("cv::fisheye") public static native void projectPoints(@ByVal GpuMat objectPoints, @ByVal GpuMat imagePoints, @ByVal GpuMat rvec, @ByVal GpuMat tvec, @ByVal GpuMat K, @ByVal GpuMat D, double alpha/*=0*/, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat jacobian); /** \brief Distorts 2D points using fisheye model.

@param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\ ), where N is the number of points in the view. @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. @param alpha The skew coefficient. @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\ .

Note that the function assumes the camera matrix of the undistorted points to be identity. This means if you want to transform back points undistorted with undistortPoints() you have to multiply them with \f$P^{-1}\f$. */ @Namespace("cv::fisheye") public static native void distortPoints(@ByVal Mat undistorted, @ByVal Mat distorted, @ByVal Mat K, @ByVal Mat D, double alpha/*=0*/); @Namespace("cv::fisheye") public static native void distortPoints(@ByVal Mat undistorted, @ByVal Mat distorted, @ByVal Mat K, @ByVal Mat D); @Namespace("cv::fisheye") public static native void distortPoints(@ByVal UMat undistorted, @ByVal UMat distorted, @ByVal UMat K, @ByVal UMat D, double alpha/*=0*/); @Namespace("cv::fisheye") public static native void distortPoints(@ByVal UMat undistorted, @ByVal UMat distorted, @ByVal UMat K, @ByVal UMat D); @Namespace("cv::fisheye") public static native void distortPoints(@ByVal GpuMat undistorted, @ByVal GpuMat distorted, @ByVal GpuMat K, @ByVal GpuMat D, double alpha/*=0*/); @Namespace("cv::fisheye") public static native void distortPoints(@ByVal GpuMat undistorted, @ByVal GpuMat distorted, @ByVal GpuMat K, @ByVal GpuMat D); /** \brief Undistorts 2D points using fisheye model

@param distorted Array of object points, 1xN/Nx1 2-channel (or vector\ ), where N is the number of points in the view. @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 1-channel or 1x1 3-channel @param P New camera matrix (3x3) or new projection matrix (3x4) @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\ . */ /** \brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero distortion is used, if R or P is empty identity matrixes are used.

@param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 1-channel or 1x1 3-channel @param P New camera matrix (3x3) or new projection matrix (3x4) @param size Undistorted image size. @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps() for details. @param map1 The first output map. @param map2 The second output map. */ /** \brief Transforms an image to compensate for fisheye lens distortion.

@param distorted image with fisheye lens distortion. @param undistorted Output image with compensated fisheye lens distortion. @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you may additionally scale and shift the result by using a different matrix. @param new_size

The function transforms an image to compensate radial and tangential lens distortion.

The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap (with bilinear interpolation). See the former function for details of the transformation being performed.

See below the results of undistortImage. - a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3, k_4, k_5, k_6) of distortion were optimized under calibration) - b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2, k_3, k_4) of fisheye distortion were optimized under calibration) - c\) original image was captured with fisheye lens

Pictures a) and b) almost the same. But if we consider points of image located far from the center of image, we can notice that on image a) these points are distorted.

![image](pics/fisheye_undistorted.jpg) */ @Namespace("cv::fisheye") public static native void undistortImage(@ByVal Mat distorted, @ByVal Mat undistorted, @ByVal Mat K, @ByVal Mat D, @ByVal(nullValue = "cv::InputArray(cv::noArray())") Mat Knew, @Const @ByRef(nullValue = "cv::Size()") Size new_size); @Namespace("cv::fisheye") public static native void undistortImage(@ByVal Mat distorted, @ByVal Mat undistorted, @ByVal Mat K, @ByVal Mat D); @Namespace("cv::fisheye") public static native void undistortImage(@ByVal UMat distorted, @ByVal UMat undistorted, @ByVal UMat K, @ByVal UMat D, @ByVal(nullValue = "cv::InputArray(cv::noArray())") UMat Knew, @Const @ByRef(nullValue = "cv::Size()") Size new_size); @Namespace("cv::fisheye") public static native void undistortImage(@ByVal UMat distorted, @ByVal UMat undistorted, @ByVal UMat K, @ByVal UMat D); @Namespace("cv::fisheye") public static native void undistortImage(@ByVal GpuMat distorted, @ByVal GpuMat undistorted, @ByVal GpuMat K, @ByVal GpuMat D, @ByVal(nullValue = "cv::InputArray(cv::noArray())") GpuMat Knew, @Const @ByRef(nullValue = "cv::Size()") Size new_size); @Namespace("cv::fisheye") public static native void undistortImage(@ByVal GpuMat distorted, @ByVal GpuMat undistorted, @ByVal GpuMat K, @ByVal GpuMat D); /** \brief Estimates new camera matrix for undistortion or rectification.

@param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. @param image_size @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 1-channel or 1x1 3-channel @param P New camera matrix (3x3) or new projection matrix (3x4) @param balance Sets the new focal length in range between the min focal length and the max focal length. Balance is in range of [0, 1]. @param new_size @param fov_scale Divisor for new focal length. */ @Namespace("cv::fisheye") public static native void estimateNewCameraMatrixForUndistortRectify(@ByVal Mat K, @ByVal Mat D, @Const @ByRef Size image_size, @ByVal Mat R, @ByVal Mat P, double balance/*=0.0*/, @Const @ByRef(nullValue = "cv::Size()") Size new_size, double fov_scale/*=1.0*/); @Namespace("cv::fisheye") public static native void estimateNewCameraMatrixForUndistortRectify(@ByVal Mat K, @ByVal Mat D, @Const @ByRef Size image_size, @ByVal Mat R, @ByVal Mat P); @Namespace("cv::fisheye") public static native void estimateNewCameraMatrixForUndistortRectify(@ByVal UMat K, @ByVal UMat D, @Const @ByRef Size image_size, @ByVal UMat R, @ByVal UMat P, double balance/*=0.0*/, @Const @ByRef(nullValue = "cv::Size()") Size new_size, double fov_scale/*=1.0*/); @Namespace("cv::fisheye") public static native void estimateNewCameraMatrixForUndistortRectify(@ByVal UMat K, @ByVal UMat D, @Const @ByRef Size image_size, @ByVal UMat R, @ByVal UMat P); @Namespace("cv::fisheye") public static native void estimateNewCameraMatrixForUndistortRectify(@ByVal GpuMat K, @ByVal GpuMat D, @Const @ByRef Size image_size, @ByVal GpuMat R, @ByVal GpuMat P, double balance/*=0.0*/, @Const @ByRef(nullValue = "cv::Size()") Size new_size, double fov_scale/*=1.0*/); @Namespace("cv::fisheye") public static native void estimateNewCameraMatrixForUndistortRectify(@ByVal GpuMat K, @ByVal GpuMat D, @Const @ByRef Size image_size, @ByVal GpuMat R, @ByVal GpuMat P); /** \brief Performs camera calibaration

@param objectPoints vector of vectors of calibration pattern points in the calibration pattern coordinate space. @param imagePoints vector of vectors of the projections of calibration pattern points. imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i. @param image_size Size of the image used only to initialize the intrinsic camera matrix. @param K Output 3x3 floating-point camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be initialized before calling the function. @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view. That is, each k-th rotation vector together with the corresponding k-th translation vector (see the next output parameter description) brings the calibration pattern from the model coordinate space (in which object points are specified) to the world coordinate space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). @param tvecs Output vector of translation vectors estimated for each pattern view. @param flags Different flags that may be zero or a combination of the following values: - **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image center ( imageSize is used), and focal distances are computed in a least-squares fashion. - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration of intrinsic optimization. - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number. - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero. - **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients are set to zeros and stay zero. - **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too. @param criteria Termination criteria for the iterative optimization algorithm. */ @Namespace("cv::fisheye") public static native double calibrate(@ByVal MatVector objectPoints, @ByVal MatVector imagePoints, @Const @ByRef Size image_size, @ByVal Mat K, @ByVal Mat D, @ByVal MatVector rvecs, @ByVal MatVector tvecs, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, DBL_EPSILON)") TermCriteria criteria); @Namespace("cv::fisheye") public static native double calibrate(@ByVal MatVector objectPoints, @ByVal MatVector imagePoints, @Const @ByRef Size image_size, @ByVal Mat K, @ByVal Mat D, @ByVal MatVector rvecs, @ByVal MatVector tvecs); @Namespace("cv::fisheye") public static native double calibrate(@ByVal UMatVector objectPoints, @ByVal UMatVector imagePoints, @Const @ByRef Size image_size, @ByVal Mat K, @ByVal Mat D, @ByVal UMatVector rvecs, @ByVal UMatVector tvecs, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, DBL_EPSILON)") TermCriteria criteria); @Namespace("cv::fisheye") public static native double calibrate(@ByVal UMatVector objectPoints, @ByVal UMatVector imagePoints, @Const @ByRef Size image_size, @ByVal Mat K, @ByVal Mat D, @ByVal UMatVector rvecs, @ByVal UMatVector tvecs); @Namespace("cv::fisheye") public static native double calibrate(@ByVal GpuMatVector objectPoints, @ByVal GpuMatVector imagePoints, @Const @ByRef Size image_size, @ByVal Mat K, @ByVal Mat D, @ByVal GpuMatVector rvecs, @ByVal GpuMatVector tvecs, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, DBL_EPSILON)") TermCriteria criteria); @Namespace("cv::fisheye") public static native double calibrate(@ByVal GpuMatVector objectPoints, @ByVal GpuMatVector imagePoints, @Const @ByRef Size image_size, @ByVal Mat K, @ByVal Mat D, @ByVal GpuMatVector rvecs, @ByVal GpuMatVector tvecs); @Namespace("cv::fisheye") public static native double calibrate(@ByVal MatVector objectPoints, @ByVal MatVector imagePoints, @Const @ByRef Size image_size, @ByVal UMat K, @ByVal UMat D, @ByVal MatVector rvecs, @ByVal MatVector tvecs, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, DBL_EPSILON)") TermCriteria criteria); @Namespace("cv::fisheye") public static native double calibrate(@ByVal MatVector objectPoints, @ByVal MatVector imagePoints, @Const @ByRef Size image_size, @ByVal UMat K, @ByVal UMat D, @ByVal MatVector rvecs, @ByVal MatVector tvecs); @Namespace("cv::fisheye") public static native double calibrate(@ByVal UMatVector objectPoints, @ByVal UMatVector imagePoints, @Const @ByRef Size image_size, @ByVal UMat K, @ByVal UMat D, @ByVal UMatVector rvecs, @ByVal UMatVector tvecs, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, DBL_EPSILON)") TermCriteria criteria); @Namespace("cv::fisheye") public static native double calibrate(@ByVal UMatVector objectPoints, @ByVal UMatVector imagePoints, @Const @ByRef Size image_size, @ByVal UMat K, @ByVal UMat D, @ByVal UMatVector rvecs, @ByVal UMatVector tvecs); @Namespace("cv::fisheye") public static native double calibrate(@ByVal GpuMatVector objectPoints, @ByVal GpuMatVector imagePoints, @Const @ByRef Size image_size, @ByVal UMat K, @ByVal UMat D, @ByVal GpuMatVector rvecs, @ByVal GpuMatVector tvecs, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, DBL_EPSILON)") TermCriteria criteria); @Namespace("cv::fisheye") public static native double calibrate(@ByVal GpuMatVector objectPoints, @ByVal GpuMatVector imagePoints, @Const @ByRef Size image_size, @ByVal UMat K, @ByVal UMat D, @ByVal GpuMatVector rvecs, @ByVal GpuMatVector tvecs); @Namespace("cv::fisheye") public static native double calibrate(@ByVal MatVector objectPoints, @ByVal MatVector imagePoints, @Const @ByRef Size image_size, @ByVal GpuMat K, @ByVal GpuMat D, @ByVal MatVector rvecs, @ByVal MatVector tvecs, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, DBL_EPSILON)") TermCriteria criteria); @Namespace("cv::fisheye") public static native double calibrate(@ByVal MatVector objectPoints, @ByVal MatVector imagePoints, @Const @ByRef Size image_size, @ByVal GpuMat K, @ByVal GpuMat D, @ByVal MatVector rvecs, @ByVal MatVector tvecs); @Namespace("cv::fisheye") public static native double calibrate(@ByVal UMatVector objectPoints, @ByVal UMatVector imagePoints, @Const @ByRef Size image_size, @ByVal GpuMat K, @ByVal GpuMat D, @ByVal UMatVector rvecs, @ByVal UMatVector tvecs, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, DBL_EPSILON)") TermCriteria criteria); @Namespace("cv::fisheye") public static native double calibrate(@ByVal UMatVector objectPoints, @ByVal UMatVector imagePoints, @Const @ByRef Size image_size, @ByVal GpuMat K, @ByVal GpuMat D, @ByVal UMatVector rvecs, @ByVal UMatVector tvecs); @Namespace("cv::fisheye") public static native double calibrate(@ByVal GpuMatVector objectPoints, @ByVal GpuMatVector imagePoints, @Const @ByRef Size image_size, @ByVal GpuMat K, @ByVal GpuMat D, @ByVal GpuMatVector rvecs, @ByVal GpuMatVector tvecs, int flags/*=0*/, @ByVal(nullValue = "cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 100, DBL_EPSILON)") TermCriteria criteria); @Namespace("cv::fisheye") public static native double calibrate(@ByVal GpuMatVector objectPoints, @ByVal GpuMatVector imagePoints, @Const @ByRef Size image_size, @ByVal GpuMat K, @ByVal GpuMat D, @ByVal GpuMatVector rvecs, @ByVal GpuMatVector tvecs); /** \brief Stereo rectification for fisheye camera model

@param K1 First camera matrix. @param D1 First camera distortion parameters. @param K2 Second camera matrix. @param D2 Second camera distortion parameters. @param imageSize Size of the image used for stereo calibration. @param R Rotation matrix between the coordinate systems of the first and the second cameras. @param tvec Translation vector between coordinate systems of the cameras. @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first camera. @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second camera. @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ). @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set, the function makes the principal points of each camera have the same pixel coordinates in the rectified views. And if the flag is not set, the function may still shift the images in the horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the useful image area. @param newImageSize New image resolution after rectification. The same size should be passed to initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) is passed (default), it is set to the original imageSize . Setting it to larger value can help you preserve details in the original image, especially when there is a big radial distortion. @param balance Sets the new focal length in range between the min focal length and the max focal length. Balance is in range of [0, 1]. @param fov_scale Divisor for new focal length. */ @Namespace("cv::fisheye") public static native void stereoRectify(@ByVal Mat K1, @ByVal Mat D1, @ByVal Mat K2, @ByVal Mat D2, @Const @ByRef Size imageSize, @ByVal Mat R, @ByVal Mat tvec, @ByVal Mat R1, @ByVal Mat R2, @ByVal Mat P1, @ByVal Mat P2, @ByVal Mat Q, int flags, @Const @ByRef(nullValue = "cv::Size()") Size newImageSize, double balance/*=0.0*/, double fov_scale/*=1.0*/); @Namespace("cv::fisheye") public static native void stereoRectify(@ByVal Mat K1, @ByVal Mat D1, @ByVal Mat K2, @ByVal Mat D2, @Const @ByRef Size imageSize, @ByVal Mat R, @ByVal Mat tvec, @ByVal Mat R1, @ByVal Mat R2, @ByVal Mat P1, @ByVal Mat P2, @ByVal Mat Q, int flags); @Namespace("cv::fisheye") public static native void stereoRectify(@ByVal UMat K1, @ByVal UMat D1, @ByVal UMat K2, @ByVal UMat D2, @Const @ByRef Size imageSize, @ByVal UMat R, @ByVal UMat tvec, @ByVal UMat R1, @ByVal UMat R2, @ByVal UMat P1, @ByVal UMat P2, @ByVal UMat Q, int flags, @Const @ByRef(nullValue = "cv::Size()") Size newImageSize, double balance/*=0.0*/, double fov_scale/*=1.0*/); @Namespace("cv::fisheye") public static native void stereoRectify(@ByVal UMat K1, @ByVal UMat D1, @ByVal UMat K2, @ByVal UMat D2, @Const @ByRef Size imageSize, @ByVal UMat R, @ByVal UMat tvec, @ByVal UMat R1, @ByVal UMat R2, @ByVal UMat P1, @ByVal UMat P2, @ByVal UMat Q, int flags); @Namespace("cv::fisheye") public static native void stereoRectify(@ByVal GpuMat K1, @ByVal GpuMat D1, @ByVal GpuMat K2, @ByVal GpuMat D2, @Const @ByRef Size imageSize, @ByVal GpuMat R, @ByVal GpuMat tvec, @ByVal GpuMat R1, @ByVal GpuMat R2, @ByVal GpuMat P1, @ByVal GpuMat P2, @ByVal GpuMat Q, int flags, @Const @ByRef(nullValue = "cv::Size()") Size newImageSize, double balance/*=0.0*/, double fov_scale/*=1.0*/); @Namespace("cv::fisheye") public static native void stereoRectify(@ByVal GpuMat K1, @ByVal GpuMat D1, @ByVal GpuMat K2, @ByVal GpuMat D2, @Const @ByRef Size imageSize, @ByVal GpuMat R, @ByVal GpuMat tvec, @ByVal GpuMat R1, @ByVal GpuMat R2, @ByVal GpuMat P1, @ByVal GpuMat P2, @ByVal GpuMat Q, int flags); /** \brief Performs stereo calibration

@param objectPoints Vector of vectors of the calibration pattern points. @param imagePoints1 Vector of vectors of the projections of the calibration pattern points, observed by the first camera. @param imagePoints2 Vector of vectors of the projections of the calibration pattern points, observed by the second camera. @param K1 Input/output first camera matrix: \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CALIB_FIX_INTRINSIC are specified, some or all of the matrix components must be initialized. @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements. @param K2 Input/output second camera matrix. The parameter is similar to K1 . @param D2 Input/output lens distortion coefficients for the second camera. The parameter is similar to D1 . @param imageSize Size of the image used only to initialize intrinsic camera matrix. @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems. @param T Output translation vector between the coordinate systems of the cameras. @param flags Different flags that may be zero or a combination of the following values: - **fisheye::CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices are estimated. - **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image center (imageSize is used), and focal distances are computed in a least-squares fashion. - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration of intrinsic optimization. - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number. - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero. - **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay zero. @param criteria Termination criteria for the iterative optimization algorithm. */ /** \} calib3d_fisheye */ // end namespace fisheye //end namespace cv // #if 0 //def __cplusplus // #endif // #endif }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy