org.bytedeco.javacv.ObjectFinder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of javacv Show documentation
Show all versions of javacv Show documentation
Java interface to OpenCV and more
/*
* Copyright (C) 2009-2015 Samuel Audet
*
* Licensed either under the Apache License, Version 2.0, or (at your option)
* under the terms of the GNU General Public License as published by
* the Free Software Foundation (subject to the "Classpath" exception),
* either version 2, or any later version (collectively, the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
* http://www.gnu.org/licenses/
* http://www.gnu.org/software/classpath/license.html
*
* or as provided in the LICENSE.txt file that accompanied this code.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* Adapted from the find_obj.cpp sample in the source package of OpenCV 2.3.1:
*
* A Demo to OpenCV Implementation of SURF
* Further Information Refer to "SURF: Speed-Up Robust Feature"
* Author: Liu Liu
* [email protected]
*/
package org.bytedeco.javacv;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;
import java.util.ArrayList;
import java.util.logging.Logger;
import static org.bytedeco.javacpp.opencv_calib3d.*;
import static org.bytedeco.javacpp.opencv_core.*;
import static org.bytedeco.javacpp.opencv_features2d.*;
import static org.bytedeco.javacpp.opencv_flann.*;
import static org.bytedeco.javacpp.opencv_imgcodecs.*;
import static org.bytedeco.javacpp.opencv_imgproc.*;
/**
*
* @author Samuel Audet
*
* ObjectFinder does not work out-of-the-box under Android, because it lacks the standard
* java.beans.beancontext package. We can work around it by doing the following *BEFORE*
* following the instructions in the README.md file:
*
* 1. Remove BaseChildSettings.class and BaseSettings.class from javacv.jar
* 2. Follow the instructions in the README.md file
* 3. In your project, define empty classes BaseChildSettings and BaseSettings under the org.bytedeco.javacv package name
*/
public class ObjectFinder {
public ObjectFinder(IplImage objectImage) {
settings = new Settings();
settings.objectImage = objectImage;
setSettings(settings);
}
public ObjectFinder(Settings settings) {
setSettings(settings);
}
public static class Settings extends BaseChildSettings {
IplImage objectImage = null;
AKAZE detector = AKAZE.create();
double distanceThreshold = 0.75;
int matchesMin = 4;
double ransacReprojThreshold = 1.0;
boolean useFLANN = false;
public IplImage getObjectImage() {
return objectImage;
}
public void setObjectImage(IplImage objectImage) {
this.objectImage = objectImage;
}
public int getDescriptorType() {
return detector.getDescriptorType();
}
public void setDescriptorType(int dtype) {
detector.setDescriptorType(dtype);
}
public int getDescriptorSize() {
return detector.getDescriptorSize();
}
public void setDescriptorSize(int dsize) {
detector.setDescriptorSize(dsize);
}
public int getDescriptorChannels() {
return detector.getDescriptorChannels();
}
public void setDescriptorChannels(int dch) {
detector.setDescriptorChannels(dch);
}
public double getThreshold() {
return detector.getThreshold();
}
public void setThreshold(double threshold) {
detector.setThreshold(threshold);
}
public int getNOctaves() {
return detector.getNOctaves();
}
public void setNOctaves(int nOctaves) {
detector.setNOctaves(nOctaves);
}
public int getNOctaveLayers() {
return detector.getNOctaveLayers();
}
public void setNOctaveLayers(int nOctaveLayers) {
detector.setNOctaveLayers(nOctaveLayers);
}
public double getDistanceThreshold() {
return distanceThreshold;
}
public void setDistanceThreshold(double distanceThreshold) {
this.distanceThreshold = distanceThreshold;
}
public int getMatchesMin() {
return matchesMin;
}
public void setMatchesMin(int matchesMin) {
this.matchesMin = matchesMin;
}
public double getRansacReprojThreshold() {
return ransacReprojThreshold;
}
public void setRansacReprojThreshold(double ransacReprojThreshold) {
this.ransacReprojThreshold = ransacReprojThreshold;
}
public boolean isUseFLANN() {
return useFLANN;
}
public void setUseFLANN(boolean useFLANN) {
this.useFLANN = useFLANN;
}
}
Settings settings;
public Settings getSettings() {
return settings;
}
public void setSettings(Settings settings) {
this.settings = settings;
objectKeypoints = new KeyPointVector();
objectDescriptors = new Mat();
settings.detector.detectAndCompute(cvarrToMat(settings.objectImage),
new Mat(), objectKeypoints, objectDescriptors, false);
int total = (int)objectKeypoints.size();
if (settings.useFLANN) {
indicesMat = new Mat(total, 2, CV_32SC1);
distsMat = new Mat(total, 2, CV_32FC1);
flannIndex = new Index();
indexParams = new LshIndexParams(12, 20, 2); // using LSH Hamming distance
searchParams = new SearchParams(64, 0, true); // maximum number of leafs checked
searchParams.deallocate(false); // for some reason FLANN seems to do it for us
}
pt1 = new Mat(total, 1, CV_32FC2);
pt2 = new Mat(total, 1, CV_32FC2);
mask = new Mat(total, 1, CV_8UC1);
H = new Mat(3, 3, CV_64FC1);
ptpairs = new ArrayList(2*objectDescriptors.rows());
logger.info(total + " object descriptors");
}
static final Logger logger = Logger.getLogger(ObjectFinder.class.getName());
KeyPointVector objectKeypoints = null, imageKeypoints = null;
Mat objectDescriptors = null, imageDescriptors = null;
Mat indicesMat, distsMat;
Index flannIndex = null;
IndexParams indexParams = null;
SearchParams searchParams = null;
Mat pt1 = null, pt2 = null, mask = null, H = null;
ArrayList ptpairs = null;
public double[] find(IplImage image) {
if (objectDescriptors.rows() < settings.getMatchesMin()) {
return null;
}
imageKeypoints = new KeyPointVector();
imageDescriptors = new Mat();
settings.detector.detectAndCompute(cvarrToMat(image),
new Mat(), imageKeypoints, imageDescriptors, false);
if (imageDescriptors.rows() < settings.getMatchesMin()) {
return null;
}
int total = (int)imageKeypoints.size();
logger.info(total + " image descriptors");
int w = settings.objectImage.width();
int h = settings.objectImage.height();
double[] srcCorners = {0, 0, w, 0, w, h, 0, h};
double[] dstCorners = locatePlanarObject(objectKeypoints, objectDescriptors,
imageKeypoints, imageDescriptors, srcCorners);
return dstCorners;
}
static final int[] bits = new int[256];
static {
for (int i = 0; i < bits.length; i++) {
for (int j = i; j != 0; j >>= 1) {
bits[i] += j & 0x1;
}
}
}
int compareDescriptors(ByteBuffer d1, ByteBuffer d2, int best) {
int totalCost = 0;
assert d1.limit() - d1.position() == d2.limit() - d2.position();
while (d1.position() < d1.limit()) {
totalCost += bits[(d1.get() ^ d2.get()) & 0xFF];
if (totalCost > best)
break;
}
return totalCost;
}
int naiveNearestNeighbor(ByteBuffer vec, ByteBuffer modelDescriptors) {
int neighbor = -1;
int d, dist1 = Integer.MAX_VALUE, dist2 = Integer.MAX_VALUE;
int size = vec.limit() - vec.position();
for (int i = 0; i * size < modelDescriptors.capacity(); i++) {
ByteBuffer mvec = (ByteBuffer)modelDescriptors.position(i * size).limit((i + 1) * size);
d = compareDescriptors((ByteBuffer)vec.reset(), mvec, dist2);
if (d < dist1) {
dist2 = dist1;
dist1 = d;
neighbor = i;
} else if (d < dist2) {
dist2 = d;
}
}
if (dist1 < settings.distanceThreshold*dist2)
return neighbor;
return -1;
}
void findPairs(Mat objectDescriptors, Mat imageDescriptors) {
int size = imageDescriptors.cols();
ByteBuffer objectBuf = objectDescriptors.createBuffer();
ByteBuffer imageBuf = imageDescriptors.createBuffer();
for (int i = 0; i * size < objectBuf.capacity(); i++) {
ByteBuffer descriptor = (ByteBuffer)objectBuf.position(i * size).limit((i + 1) * size).mark();
int nearestNeighbor = naiveNearestNeighbor(descriptor, imageBuf);
if (nearestNeighbor >= 0) {
ptpairs.add(i);
ptpairs.add(nearestNeighbor);
}
}
}
void flannFindPairs(Mat objectDescriptors, Mat imageDescriptors) {
int length = objectDescriptors.rows();
// find nearest neighbors using FLANN
flannIndex.build(imageDescriptors, indexParams, FLANN_DIST_HAMMING);
flannIndex.knnSearch(objectDescriptors, indicesMat, distsMat, 2, searchParams);
IntBuffer indicesBuf = indicesMat.createBuffer();
IntBuffer distsBuf = distsMat.createBuffer();
for (int i = 0; i < length; i++) {
if (distsBuf.get(2*i) < settings.distanceThreshold*distsBuf.get(2*i+1)) {
ptpairs.add(i);
ptpairs.add(indicesBuf.get(2*i));
}
}
}
/** a rough implementation for object location */
double[] locatePlanarObject(KeyPointVector objectKeypoints, Mat objectDescriptors,
KeyPointVector imageKeypoints, Mat imageDescriptors, double[] srcCorners) {
ptpairs.clear();
if (settings.useFLANN) {
flannFindPairs(objectDescriptors, imageDescriptors);
} else {
findPairs(objectDescriptors, imageDescriptors);
}
int n = ptpairs.size()/2;
logger.info(n + " matching pairs found");
if (n < settings.matchesMin) {
return null;
}
pt1 .resize(n);
pt2 .resize(n);
mask.resize(n);
FloatBuffer pt1Idx = pt1.createBuffer();
FloatBuffer pt2Idx = pt2.createBuffer();
for (int i = 0; i < n; i++) {
Point2f p1 = objectKeypoints.get(ptpairs.get(2*i)).pt();
pt1Idx.put(2*i, p1.x()); pt1Idx.put(2*i+1, p1.y());
Point2f p2 = imageKeypoints.get(ptpairs.get(2*i+1)).pt();
pt2Idx.put(2*i, p2.x()); pt2Idx.put(2*i+1, p2.y());
}
H = findHomography(pt1, pt2, CV_RANSAC, settings.ransacReprojThreshold, mask, 2000, 0.995);
if (H.empty() || countNonZero(mask) < settings.matchesMin) {
return null;
}
double[] h = (double[])H.createIndexer(false).array();
double[] dstCorners = new double[srcCorners.length];
for(int i = 0; i < srcCorners.length/2; i++) {
double x = srcCorners[2*i], y = srcCorners[2*i + 1];
double Z = 1/(h[6]*x + h[7]*y + h[8]);
double X = (h[0]*x + h[1]*y + h[2])*Z;
double Y = (h[3]*x + h[4]*y + h[5])*Z;
dstCorners[2*i ] = X;
dstCorners[2*i + 1] = Y;
}
return dstCorners;
}
public static void main(String[] args) throws Exception {
// Logger.getLogger("org.bytedeco.javacv").setLevel(Level.OFF);
String objectFilename = args.length == 2 ? args[0] : "/usr/local/share/OpenCV/samples/c/box.png";
String sceneFilename = args.length == 2 ? args[1] : "/usr/local/share/OpenCV/samples/c/box_in_scene.png";
IplImage object = cvLoadImage(objectFilename, CV_LOAD_IMAGE_GRAYSCALE);
IplImage image = cvLoadImage(sceneFilename, CV_LOAD_IMAGE_GRAYSCALE);
if (object == null || image == null) {
System.err.println("Can not load " + objectFilename + " and/or " + sceneFilename);
System.exit(-1);
}
IplImage objectColor = IplImage.create(object.width(), object.height(), 8, 3);
cvCvtColor(object, objectColor, CV_GRAY2BGR);
IplImage correspond = IplImage.create(image.width(), object.height()+ image.height(), 8, 1);
cvSetImageROI(correspond, cvRect(0, 0, object.width(), object.height()));
cvCopy(object, correspond);
cvSetImageROI(correspond, cvRect(0, object.height(), correspond.width(), correspond.height()));
cvCopy(image, correspond);
cvResetImageROI(correspond);
ObjectFinder.Settings settings = new ObjectFinder.Settings();
settings.objectImage = object;
settings.useFLANN = true;
settings.ransacReprojThreshold = 5;
ObjectFinder finder = new ObjectFinder(settings);
long start = System.currentTimeMillis();
double[] dst_corners = finder.find(image);
System.out.println("Finding time = " + (System.currentTimeMillis() - start) + " ms");
if (dst_corners != null) {
for (int i = 0; i < 4; i++) {
int j = (i+1)%4;
int x1 = (int)Math.round(dst_corners[2*i ]);
int y1 = (int)Math.round(dst_corners[2*i + 1]);
int x2 = (int)Math.round(dst_corners[2*j ]);
int y2 = (int)Math.round(dst_corners[2*j + 1]);
line(cvarrToMat(correspond), new Point(x1, y1 + object.height()),
new Point(x2, y2 + object.height()),
Scalar.WHITE, 1, 8, 0);
}
}
for (int i = 0; i < finder.ptpairs.size(); i += 2) {
Point2f pt1 = finder.objectKeypoints.get(finder.ptpairs.get(i)).pt();
Point2f pt2 = finder.imageKeypoints.get(finder.ptpairs.get(i + 1)).pt();
line(cvarrToMat(correspond), new Point(Math.round(pt1.x()), Math.round(pt1.y())),
new Point(Math.round(pt2.x()), Math.round(pt2.y() + object.height())),
Scalar.WHITE, 1, 8, 0);
}
CanvasFrame objectFrame = new CanvasFrame("Object");
CanvasFrame correspondFrame = new CanvasFrame("Object Correspond");
OpenCVFrameConverter converter = new OpenCVFrameConverter.ToIplImage();
correspondFrame.showImage(converter.convert(correspond));
for (int i = 0; i < finder.objectKeypoints.size(); i++) {
KeyPoint r = finder.objectKeypoints.get(i);
Point center = new Point(Math.round(r.pt().x()), Math.round(r.pt().y()));
int radius = Math.round(r.size() / 2);
circle(cvarrToMat(objectColor), center, radius, Scalar.RED, 1, 8, 0);
}
objectFrame.showImage(converter.convert(objectColor));
objectFrame.waitKey();
objectFrame.dispose();
correspondFrame.dispose();
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy