
org.bytedeco.javacv.ImageTransformer.cl Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of javacv Show documentation
Show all versions of javacv Show documentation
Java interface to OpenCV and more
/*
* Copyright (C) 2011-2012 Samuel Audet
*
* Licensed either under the Apache License, Version 2.0, or (at your option)
* under the terms of the GNU General Public License as published by
* the Free Software Foundation (subject to the "Classpath" exception),
* either version 2, or any later version (collectively, the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
* http://www.gnu.org/licenses/
* http://www.gnu.org/software/classpath/license.html
*
* or as provided in the LICENSE.txt file that accompanied this code.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |
CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
//const sampler_t linearSampler = CLK_NORMALIZED_COORDS_FALSE |
// CLK_ADDRESS_CLAMP | CLK_FILTER_LINEAR;
inline float4 readLinear(read_only image2d_t img, float2 xy) {
float2 xy00 = floor(xy);
float dx = xy.x - xy00.x;
float dy = xy.y - xy00.y;
float4 rgba = (1-dx)*(1-dy)*read_imagef(img, sampler, xy00);
rgba += dx *(1-dy)*read_imagef(img, sampler, xy00 + (float2)(1, 0));
rgba += (1-dx)* dy *read_imagef(img, sampler, xy00 + (float2)(0, 1));
rgba += dx * dy *read_imagef(img, sampler, xy00 + (float2)(1, 1));
return rgba;
}
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
inline void atomicAddFloat(global float* address, float val) {
global int* address_as_int = (global int*)address;
while (val != 0.0f) {
val += as_float(atom_xchg(address_as_int, as_int(0.0f)));
val = as_float(atom_xchg(address_as_int, as_int(val)));
}
}
// Bit Twiddling Hacks
// http://graphics.stanford.edu/~seander/bithacks.html
inline int ceilPow2(int v) {
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return ++v;
}
inline int reduceSumInt(float value, int i, int size, local void* scratch) {
local float *scratchi = (local float*)scratch;
scratchi[i] = value;
barrier(CLK_LOCAL_MEM_FENCE);
for (int offset = ceilPow2(size)/2; offset > 0; offset >>= 1) {
if (i < offset && i + offset < size) {
scratchi[i] += scratchi[i + offset];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
return scratchi[0];
}
inline float reduceSumFloat(float value, int i, int size, local void* scratch) {
local float *scratchf = (local float*)scratch;
scratchf[i] = value;
barrier(CLK_LOCAL_MEM_FENCE);
for (int offset = ceilPow2(size)/2; offset > 0; offset >>= 1) {
if (i < offset && i + offset < size) {
scratchf[i] += scratchf[i + offset];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
return scratchf[0];
}
struct InputData {
int roiY, roiHeight;
float zeroThreshold, outlierThreshold;
};
struct OutputData {
int groupsFinished, dstCount, dstCountZero, dstCountOutlier;
float srcDstDot[DOT_SIZE], dstDstDot[DOT_SIZE][DOT_SIZE];
};
inline void multiWarpColorTransform(read_only image2d_t srcImg, read_only image2d_t srcImg2, read_only image2d_t subImg,
read_only image2d_t dotImg, write_only image2d_t transImg, write_only image2d_t dstImg, read_only image2d_t maskImg,
int width, int height, constant float _H[][9], constant float _H2[][9], constant float/*4*/ _X[][16/*4*/], int size,
constant struct InputData *inputData, global struct OutputData *outputData,
bool haveSubImg, bool haveDotImg, bool haveTransImg, bool haveDstImg, bool haveMaskImg) {
const int x = get_global_id(0), gx = get_group_id(0), lx = get_local_id(0), lsx = get_local_size(0);
const int y = get_global_id(1), gy = get_group_id(1), ly = get_local_id(1), lsy = get_local_size(1);
const int z = get_global_id(2), gz = get_group_id(2), lz = get_local_id(2), lsz = get_local_size(2);
int dstCount = 0, dstCountZero = 0, dstCountOutlier = 0;
float srcDstDot = 0, dstDstDot = 0;
local float scratch[DOT_SIZE + 1][DOT_SIZE | 1][3];
local float H[DOT_SIZE][9], H2[DOT_SIZE][9], X[DOT_SIZE][12];
if (lx < size) {
for (int j = 0; j < 9; j++) {
H[lx][j] = _H[lx][j];
if (_H2) H2[lx][j] = _H2[lx][j];
}
for (int j = 0; j < 12; j++) {
if (_X) X[lx][j] = _X[lx][j];
}
}
barrier(CLK_LOCAL_MEM_FENCE);
for (int y = inputData->roiY; y < inputData->roiY + inputData->roiHeight; y++) {
const int2 xy = (int2)(x, y);
float4 dotRGB = 0, dstRGB = 0;
if (x >= width) {
goto skipPixel;
}
if (haveMaskImg) {
if (read_imagei(maskImg, sampler, xy).x == 0) {
goto skipPixel;
} else {
dstCount++;
}
}
if (haveDotImg) {
float zeroThreshold2 = inputData->zeroThreshold * inputData->zeroThreshold;
float outlierThreshold2 = inputData->outlierThreshold * inputData->outlierThreshold;
dotRGB = read_imagef(dotImg, sampler, xy);
float norm2 = dot(dotRGB.xyz, dotRGB.xyz);
if (norm2 < zeroThreshold2) {
dstCountZero++;
goto skipPixel;
} else if (outlierThreshold2 > 0 && norm2 > outlierThreshold2) {
dstCountOutlier++;
goto skipPixel;
}
}
float u = H[lz][0]*x + H[lz][1]*y + H[lz][2];
float v = H[lz][3]*x + H[lz][4]*y + H[lz][5];
float w = H[lz][6]*x + H[lz][7]*y + H[lz][8];
float inv_w = native_recip(w);
float2 uv = inv_w*(float2)(u, v);// + 0.5f;
// float4 srcRGB = read_imagef(srcImg, linearSampler, uv);
float4 srcRGB = readLinear(srcImg, uv);
if (_X) {
// srcRGB.w = 1;
// dstRGB = (float4)(dot(X[lz][0], srcRGB), dot(X[lz][1], srcRGB),
// dot(X[lz][2], srcRGB), dot(X[lz][3], srcRGB));
dstRGB.x = X[lz][0]*srcRGB.x + X[lz][1]*srcRGB.y + X[lz][2] *srcRGB.z + X[lz][3];
dstRGB.y = X[lz][4]*srcRGB.x + X[lz][5]*srcRGB.y + X[lz][6] *srcRGB.z + X[lz][7];
dstRGB.z = X[lz][8]*srcRGB.x + X[lz][9]*srcRGB.y + X[lz][10]*srcRGB.z + X[lz][11];
} else {
dstRGB = srcRGB;
}
if (_H2) {
float u2 = H2[lz][0]*x + H2[lz][1]*y + H2[lz][2];
float v2 = H2[lz][3]*x + H2[lz][4]*y + H2[lz][5];
float w2 = H2[lz][6]*x + H2[lz][7]*y + H2[lz][8];
float inv_w2 = native_recip(w2);
float2 uv2 = inv_w2*(float2)(u2, v2);// + 0.5f;
// dstRGB *= read_imagef(srcImg2, linearSampler, uv2);
dstRGB *= readLinear(srcImg2, uv2);
}
dstRGB.w = 1;
if (haveTransImg) {
write_imagef(transImg, xy, dstRGB);
}
if (haveSubImg) {
dstRGB.xyz -= read_imagef(subImg, sampler, xy).xyz;
}
if (haveDstImg) {
write_imagef(dstImg, xy, dstRGB);
}
if (haveDotImg) {
srcDstDot += dot(dotRGB.xyz, dstRGB.xyz);
}
if (size == 1) {
float zeroThreshold2 = inputData->zeroThreshold * inputData->zeroThreshold;
float outlierThreshold2 = inputData->outlierThreshold * inputData->outlierThreshold;
float norm2 = dot(dstRGB.xyz, dstRGB.xyz);
if (norm2 < zeroThreshold2) {
dstCountZero++;
} else if (outlierThreshold2 > 0 && norm2 > outlierThreshold2) {
dstCountOutlier++;
} else {
dstDstDot += norm2;
}
}
skipPixel:
if (size > 1) {
scratch[lz][lx][0] = dstRGB.x;
scratch[lz][lx][1] = dstRGB.y;
scratch[lz][lx][2] = dstRGB.z;
barrier(CLK_LOCAL_MEM_FENCE);
#pragma unroll
for (int i = 0; i < size; i++) {
dstDstDot += scratch[lz][i][0]*scratch[lx][i][0] +
scratch[lz][i][1]*scratch[lx][i][1] +
scratch[lz][i][2]*scratch[lx][i][2];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
}
if (lz == 0) {
dstCount = reduceSumInt(dstCount, lx, lsx, scratch);
dstCountZero = reduceSumInt(dstCountZero, lx, lsx, scratch);
dstCountOutlier = reduceSumInt(dstCountOutlier, lx, lsx, scratch);
if (lx == 0) {
outputData[gx].dstCount = dstCount;
outputData[gx].dstCountZero = dstCountZero;
outputData[gx].dstCountOutlier = dstCountOutlier;
}
}
if (size == 1) {
if (haveDotImg) srcDstDot = reduceSumFloat(srcDstDot, lx, lsx, scratch);
dstDstDot = reduceSumFloat(dstDstDot, lx, lsx, scratch);
if (lx == 0) {
if (haveDotImg) outputData[gx].srcDstDot[0] = srcDstDot;
outputData[gx].dstDstDot[0][0] = dstDstDot;
}
} else {
if (haveDotImg) {
srcDstDot = reduceSumFloat(srcDstDot, lx, lsx, scratch[lz]);
if (lx == 0) {
outputData[gx].srcDstDot[lz] = srcDstDot;
}
}
outputData[gx].dstDstDot[lz][lx] = dstDstDot;
}
}
kernel void reduceOutputData(global struct OutputData *outputData) {
const int x = get_global_id(0), gx = get_group_id(0), lx = get_local_id(0), lsx = get_local_size(0);
local int scratch[256];
int dstCount = reduceSumInt(outputData[x].dstCount, lx, lsx, scratch);
int dstCountZero = reduceSumInt(outputData[x].dstCountZero, lx, lsx, scratch);
int dstCountOutlier = reduceSumInt(outputData[x].dstCountOutlier, lx, lsx, scratch);
if (lx == 0) {
outputData[0].dstCount = dstCount;
outputData[0].dstCountZero = dstCountZero;
outputData[0].dstCountOutlier = dstCountOutlier;
}
for (int i = 0; i < DOT_SIZE; i++) {
float srcDstDot = reduceSumFloat(outputData[x].srcDstDot[i], lx, lsx, scratch);
float dstDstDot = reduceSumFloat(outputData[x].dstDstDot[i][i], lx, lsx, scratch);
if (lx == 0) {
outputData[0].srcDstDot[i] = srcDstDot;
outputData[0].dstDstDot[i][i] = dstDstDot;
}
for (int j = i+1; j < DOT_SIZE; j++) {
float dstDstDot = reduceSumFloat(outputData[x].dstDstDot[i][j], lx, lsx, scratch);
if (lx == 0) {
outputData[0].dstDstDot[i][j] = dstDstDot;
outputData[0].dstDstDot[j][i] = dstDstDot;
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy