org.opencv.dnn.KeypointsModel Maven / Gradle / Ivy
The newest version!
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.dnn;
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint2f;
import org.opencv.dnn.Model;
import org.opencv.dnn.Net;
import org.opencv.utils.Converters;
// C++: class KeypointsModel
/**
* This class represents high-level API for keypoints models
*
* KeypointsModel allows to set params for preprocessing input image.
* KeypointsModel creates net from file with trained weights and config,
* sets preprocessing input, runs forward pass and returns the x and y coordinates of each detected keypoint
*/
public class KeypointsModel extends Model {
protected KeypointsModel(long addr) { super(addr); }
// internal usage only
public static KeypointsModel __fromPtr__(long addr) { return new KeypointsModel(addr); }
//
// C++: cv::dnn::KeypointsModel::KeypointsModel(String model, String config = "")
//
/**
* Create keypoints model from network represented in one of the supported formats.
* An order of {@code model} and {@code config} arguments does not matter.
* @param model Binary file contains trained weights.
* @param config Text file contains network configuration.
*/
public KeypointsModel(String model, String config) {
super(KeypointsModel_0(model, config));
}
/**
* Create keypoints model from network represented in one of the supported formats.
* An order of {@code model} and {@code config} arguments does not matter.
* @param model Binary file contains trained weights.
*/
public KeypointsModel(String model) {
super(KeypointsModel_1(model));
}
//
// C++: cv::dnn::KeypointsModel::KeypointsModel(Net network)
//
/**
* Create model from deep learning network.
* @param network Net object.
*/
public KeypointsModel(Net network) {
super(KeypointsModel_2(network.nativeObj));
}
//
// C++: vector_Point2f cv::dnn::KeypointsModel::estimate(Mat frame, float thresh = 0.5)
//
/**
* Given the {@code input} frame, create input blob, run net
* @param thresh minimum confidence threshold to select a keypoint
* @return a vector holding the x and y coordinates of each detected keypoint
*
* @param frame automatically generated
*/
public MatOfPoint2f estimate(Mat frame, float thresh) {
return MatOfPoint2f.fromNativeAddr(estimate_0(nativeObj, frame.nativeObj, thresh));
}
/**
* Given the {@code input} frame, create input blob, run net
* @return a vector holding the x and y coordinates of each detected keypoint
*
* @param frame automatically generated
*/
public MatOfPoint2f estimate(Mat frame) {
return MatOfPoint2f.fromNativeAddr(estimate_1(nativeObj, frame.nativeObj));
}
@Override
protected void finalize() throws Throwable {
delete(nativeObj);
}
// C++: cv::dnn::KeypointsModel::KeypointsModel(String model, String config = "")
private static native long KeypointsModel_0(String model, String config);
private static native long KeypointsModel_1(String model);
// C++: cv::dnn::KeypointsModel::KeypointsModel(Net network)
private static native long KeypointsModel_2(long network_nativeObj);
// C++: vector_Point2f cv::dnn::KeypointsModel::estimate(Mat frame, float thresh = 0.5)
private static native long estimate_0(long nativeObj, long frame_nativeObj, float thresh);
private static native long estimate_1(long nativeObj, long frame_nativeObj);
// native support for java finalize()
private static native void delete(long nativeObj);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy