All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bytedeco.opencv.opencv_ml.LogisticRegression Maven / Gradle / Ivy

There is a newer version: 4.10.0-1.5.11
Show newest version
// Targeted by JavaCPP version 1.5.3: DO NOT EDIT THIS FILE

package org.bytedeco.opencv.opencv_ml;

import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;

import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.openblas.global.openblas_nolapack.*;
import static org.bytedeco.openblas.global.openblas.*;
import org.bytedeco.opencv.opencv_core.*;
import static org.bytedeco.opencv.global.opencv_core.*;

import static org.bytedeco.opencv.global.opencv_ml.*;

// #endif

/****************************************************************************************\
*                           Logistic Regression                                          *
\****************************************************************************************/

/** \brief Implements Logistic Regression classifier.

@see \ref ml_intro_lr */ @Namespace("cv::ml") @Properties(inherit = org.bytedeco.opencv.presets.opencv_ml.class) public class LogisticRegression extends StatModel { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ public LogisticRegression(Pointer p) { super(p); } /** Learning rate. */ /** @see setLearningRate */ public native double getLearningRate(); /** \copybrief getLearningRate @see getLearningRate */ public native void setLearningRate(double val); /** Number of iterations. */ /** @see setIterations */ public native int getIterations(); /** \copybrief getIterations @see getIterations */ public native void setIterations(int val); /** Kind of regularization to be applied. See LogisticRegression::RegKinds. */ /** @see setRegularization */ public native int getRegularization(); /** \copybrief getRegularization @see getRegularization */ public native void setRegularization(int val); /** Kind of training method used. See LogisticRegression::Methods. */ /** @see setTrainMethod */ public native int getTrainMethod(); /** \copybrief getTrainMethod @see getTrainMethod */ public native void setTrainMethod(int val); /** Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It has to take values less than the total number of training samples. */ /** @see setMiniBatchSize */ public native int getMiniBatchSize(); /** \copybrief getMiniBatchSize @see getMiniBatchSize */ public native void setMiniBatchSize(int val); /** Termination criteria of the algorithm. */ /** @see setTermCriteria */ public native @ByVal TermCriteria getTermCriteria(); /** \copybrief getTermCriteria @see getTermCriteria */ public native void setTermCriteria(@ByVal TermCriteria val); /** Regularization kinds */ /** enum cv::ml::LogisticRegression::RegKinds */ public static final int /** Regularization disabled */ REG_DISABLE = -1, /** %L1 norm */ REG_L1 = 0, /** %L2 norm */ REG_L2 = 1; /** Training methods */ /** enum cv::ml::LogisticRegression::Methods */ public static final int BATCH = 0, /** Set MiniBatchSize to a positive integer when using this method. */ MINI_BATCH = 1; /** \brief Predicts responses for input samples and returns a float type.

@param samples The input data for the prediction algorithm. Matrix [m x n], where each row contains variables (features) of one object being classified. Should have data type CV_32F. @param results Predicted labels as a column matrix of type CV_32S. @param flags Not used. */ public native @Override float predict( @ByVal Mat samples, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") Mat results, int flags/*=0*/ ); public native float predict( @ByVal Mat samples ); public native @Override float predict( @ByVal UMat samples, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") UMat results, int flags/*=0*/ ); public native float predict( @ByVal UMat samples ); public native @Override float predict( @ByVal GpuMat samples, @ByVal(nullValue = "cv::OutputArray(cv::noArray())") GpuMat results, int flags/*=0*/ ); public native float predict( @ByVal GpuMat samples ); /** \brief This function returns the trained parameters arranged across rows.

For a two class classification problem, it returns a row matrix. It returns learnt parameters of the Logistic Regression as a matrix of type CV_32F. */ public native @ByVal Mat get_learnt_thetas(); /** \brief Creates empty model.

Creates Logistic Regression model with parameters given. */ public static native @Ptr LogisticRegression create(); /** \brief Loads and creates a serialized LogisticRegression from a file * * Use LogisticRegression::save to serialize and store an LogisticRegression to disk. * Load the LogisticRegression from this file again, by calling this function with the path to the file. * Optionally specify the node for the file containing the classifier * * @param filepath path to serialized LogisticRegression * @param nodeName name of node containing the classifier */ public static native @Ptr LogisticRegression load(@Str BytePointer filepath, @Str BytePointer nodeName/*=cv::String()*/); public static native @Ptr LogisticRegression load(@Str BytePointer filepath); public static native @Ptr LogisticRegression load(@Str String filepath, @Str String nodeName/*=cv::String()*/); public static native @Ptr LogisticRegression load(@Str String filepath); }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy