![JAR search and dependency download from the Maven repository](/logo.png)
org.opencv.bgsegm.BackgroundSubtractorGMG Maven / Gradle / Ivy
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.bgsegm;
import org.opencv.video.BackgroundSubtractor;
// C++: class BackgroundSubtractorGMG
/**
* Background Subtractor module based on the algorithm given in CITE: Gold2012 .
*
* Takes a series of images and returns a sequence of mask (8UC1)
* images of the same size, where 255 indicates Foreground and 0 represents Background.
* This class implements an algorithm described in "Visual Tracking of Human Visitors under
* Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
* A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
*/
public class BackgroundSubtractorGMG extends BackgroundSubtractor {
protected BackgroundSubtractorGMG(long addr) { super(addr); }
// internal usage only
public static BackgroundSubtractorGMG __fromPtr__(long addr) { return new BackgroundSubtractorGMG(addr); }
//
// C++: bool cv::bgsegm::BackgroundSubtractorGMG::getUpdateBackgroundModel()
//
/**
* Returns the status of background model update
* @return automatically generated
*/
public boolean getUpdateBackgroundModel() {
return getUpdateBackgroundModel_0(nativeObj);
}
//
// C++: double cv::bgsegm::BackgroundSubtractorGMG::getBackgroundPrior()
//
/**
* Returns the prior probability that each individual pixel is a background pixel.
* @return automatically generated
*/
public double getBackgroundPrior() {
return getBackgroundPrior_0(nativeObj);
}
//
// C++: double cv::bgsegm::BackgroundSubtractorGMG::getDecisionThreshold()
//
/**
* Returns the value of decision threshold.
*
* Decision value is the value above which pixel is determined to be FG.
* @return automatically generated
*/
public double getDecisionThreshold() {
return getDecisionThreshold_0(nativeObj);
}
//
// C++: double cv::bgsegm::BackgroundSubtractorGMG::getDefaultLearningRate()
//
/**
* Returns the learning rate of the algorithm.
*
* It lies between 0.0 and 1.0. It determines how quickly features are "forgotten" from
* histograms.
* @return automatically generated
*/
public double getDefaultLearningRate() {
return getDefaultLearningRate_0(nativeObj);
}
//
// C++: double cv::bgsegm::BackgroundSubtractorGMG::getMaxVal()
//
/**
* Returns the maximum value taken on by pixels in image sequence. e.g. 1.0 or 255.
* @return automatically generated
*/
public double getMaxVal() {
return getMaxVal_0(nativeObj);
}
//
// C++: double cv::bgsegm::BackgroundSubtractorGMG::getMinVal()
//
/**
* Returns the minimum value taken on by pixels in image sequence. Usually 0.
* @return automatically generated
*/
public double getMinVal() {
return getMinVal_0(nativeObj);
}
//
// C++: int cv::bgsegm::BackgroundSubtractorGMG::getMaxFeatures()
//
/**
* Returns total number of distinct colors to maintain in histogram.
* @return automatically generated
*/
public int getMaxFeatures() {
return getMaxFeatures_0(nativeObj);
}
//
// C++: int cv::bgsegm::BackgroundSubtractorGMG::getNumFrames()
//
/**
* Returns the number of frames used to initialize background model.
* @return automatically generated
*/
public int getNumFrames() {
return getNumFrames_0(nativeObj);
}
//
// C++: int cv::bgsegm::BackgroundSubtractorGMG::getQuantizationLevels()
//
/**
* Returns the parameter used for quantization of color-space.
*
* It is the number of discrete levels in each channel to be used in histograms.
* @return automatically generated
*/
public int getQuantizationLevels() {
return getQuantizationLevels_0(nativeObj);
}
//
// C++: int cv::bgsegm::BackgroundSubtractorGMG::getSmoothingRadius()
//
/**
* Returns the kernel radius used for morphological operations
* @return automatically generated
*/
public int getSmoothingRadius() {
return getSmoothingRadius_0(nativeObj);
}
//
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setBackgroundPrior(double bgprior)
//
/**
* Sets the prior probability that each individual pixel is a background pixel.
* @param bgprior automatically generated
*/
public void setBackgroundPrior(double bgprior) {
setBackgroundPrior_0(nativeObj, bgprior);
}
//
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setDecisionThreshold(double thresh)
//
/**
* Sets the value of decision threshold.
* @param thresh automatically generated
*/
public void setDecisionThreshold(double thresh) {
setDecisionThreshold_0(nativeObj, thresh);
}
//
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setDefaultLearningRate(double lr)
//
/**
* Sets the learning rate of the algorithm.
* @param lr automatically generated
*/
public void setDefaultLearningRate(double lr) {
setDefaultLearningRate_0(nativeObj, lr);
}
//
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setMaxFeatures(int maxFeatures)
//
/**
* Sets total number of distinct colors to maintain in histogram.
* @param maxFeatures automatically generated
*/
public void setMaxFeatures(int maxFeatures) {
setMaxFeatures_0(nativeObj, maxFeatures);
}
//
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setMaxVal(double val)
//
/**
* Sets the maximum value taken on by pixels in image sequence.
* @param val automatically generated
*/
public void setMaxVal(double val) {
setMaxVal_0(nativeObj, val);
}
//
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setMinVal(double val)
//
/**
* Sets the minimum value taken on by pixels in image sequence.
* @param val automatically generated
*/
public void setMinVal(double val) {
setMinVal_0(nativeObj, val);
}
//
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setNumFrames(int nframes)
//
/**
* Sets the number of frames used to initialize background model.
* @param nframes automatically generated
*/
public void setNumFrames(int nframes) {
setNumFrames_0(nativeObj, nframes);
}
//
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setQuantizationLevels(int nlevels)
//
/**
* Sets the parameter used for quantization of color-space
* @param nlevels automatically generated
*/
public void setQuantizationLevels(int nlevels) {
setQuantizationLevels_0(nativeObj, nlevels);
}
//
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setSmoothingRadius(int radius)
//
/**
* Sets the kernel radius used for morphological operations
* @param radius automatically generated
*/
public void setSmoothingRadius(int radius) {
setSmoothingRadius_0(nativeObj, radius);
}
//
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setUpdateBackgroundModel(bool update)
//
/**
* Sets the status of background model update
* @param update automatically generated
*/
public void setUpdateBackgroundModel(boolean update) {
setUpdateBackgroundModel_0(nativeObj, update);
}
@Override
protected void finalize() throws Throwable {
delete(nativeObj);
}
// C++: bool cv::bgsegm::BackgroundSubtractorGMG::getUpdateBackgroundModel()
private static native boolean getUpdateBackgroundModel_0(long nativeObj);
// C++: double cv::bgsegm::BackgroundSubtractorGMG::getBackgroundPrior()
private static native double getBackgroundPrior_0(long nativeObj);
// C++: double cv::bgsegm::BackgroundSubtractorGMG::getDecisionThreshold()
private static native double getDecisionThreshold_0(long nativeObj);
// C++: double cv::bgsegm::BackgroundSubtractorGMG::getDefaultLearningRate()
private static native double getDefaultLearningRate_0(long nativeObj);
// C++: double cv::bgsegm::BackgroundSubtractorGMG::getMaxVal()
private static native double getMaxVal_0(long nativeObj);
// C++: double cv::bgsegm::BackgroundSubtractorGMG::getMinVal()
private static native double getMinVal_0(long nativeObj);
// C++: int cv::bgsegm::BackgroundSubtractorGMG::getMaxFeatures()
private static native int getMaxFeatures_0(long nativeObj);
// C++: int cv::bgsegm::BackgroundSubtractorGMG::getNumFrames()
private static native int getNumFrames_0(long nativeObj);
// C++: int cv::bgsegm::BackgroundSubtractorGMG::getQuantizationLevels()
private static native int getQuantizationLevels_0(long nativeObj);
// C++: int cv::bgsegm::BackgroundSubtractorGMG::getSmoothingRadius()
private static native int getSmoothingRadius_0(long nativeObj);
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setBackgroundPrior(double bgprior)
private static native void setBackgroundPrior_0(long nativeObj, double bgprior);
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setDecisionThreshold(double thresh)
private static native void setDecisionThreshold_0(long nativeObj, double thresh);
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setDefaultLearningRate(double lr)
private static native void setDefaultLearningRate_0(long nativeObj, double lr);
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setMaxFeatures(int maxFeatures)
private static native void setMaxFeatures_0(long nativeObj, int maxFeatures);
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setMaxVal(double val)
private static native void setMaxVal_0(long nativeObj, double val);
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setMinVal(double val)
private static native void setMinVal_0(long nativeObj, double val);
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setNumFrames(int nframes)
private static native void setNumFrames_0(long nativeObj, int nframes);
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setQuantizationLevels(int nlevels)
private static native void setQuantizationLevels_0(long nativeObj, int nlevels);
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setSmoothingRadius(int radius)
private static native void setSmoothingRadius_0(long nativeObj, int radius);
// C++: void cv::bgsegm::BackgroundSubtractorGMG::setUpdateBackgroundModel(bool update)
private static native void setUpdateBackgroundModel_0(long nativeObj, boolean update);
// native support for java finalize()
private static native void delete(long nativeObj);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy