Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.features2d;
import org.opencv.features2d.BFMatcher;
import org.opencv.features2d.DescriptorMatcher;
// C++: class BFMatcher
/**
* Brute-force descriptor matcher.
*
* For each descriptor in the first set, this matcher finds the closest descriptor in the second set
* by trying each one. This descriptor matcher supports masking permissible matches of descriptor
* sets.
*/
public class BFMatcher extends DescriptorMatcher {
protected BFMatcher(long addr) { super(addr); }
// internal usage only
public static BFMatcher __fromPtr__(long addr) { return new BFMatcher(addr); }
//
// C++: cv::BFMatcher::BFMatcher(int normType = NORM_L2, bool crossCheck = false)
//
/**
* Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
*
*
* @param normType automatically generated
* @param crossCheck automatically generated
*/
public BFMatcher(int normType, boolean crossCheck) {
super(BFMatcher_0(normType, crossCheck));
}
/**
* Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
*
*
* @param normType automatically generated
*/
public BFMatcher(int normType) {
super(BFMatcher_1(normType));
}
/**
* Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
*
*
*/
public BFMatcher() {
super(BFMatcher_2());
}
//
// C++: static Ptr_BFMatcher cv::BFMatcher::create(int normType = NORM_L2, bool crossCheck = false)
//
/**
* Brute-force matcher create method.
* @param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
* preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
* BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
* description).
* @param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k
* nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
* k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
* matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
* pairs. Such technique usually produces best results with minimal number of outliers when there are
* enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
* @return automatically generated
*/
public static BFMatcher create(int normType, boolean crossCheck) {
return BFMatcher.__fromPtr__(create_0(normType, crossCheck));
}
/**
* Brute-force matcher create method.
* @param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
* preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
* BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
* description).
* nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
* k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
* matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
* pairs. Such technique usually produces best results with minimal number of outliers when there are
* enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
* @return automatically generated
*/
public static BFMatcher create(int normType) {
return BFMatcher.__fromPtr__(create_1(normType));
}
/**
* Brute-force matcher create method.
* preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
* BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
* description).
* nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
* k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
* matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
* pairs. Such technique usually produces best results with minimal number of outliers when there are
* enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
* @return automatically generated
*/
public static BFMatcher create() {
return BFMatcher.__fromPtr__(create_2());
}
@Override
protected void finalize() throws Throwable {
delete(nativeObj);
}
// C++: cv::BFMatcher::BFMatcher(int normType = NORM_L2, bool crossCheck = false)
private static native long BFMatcher_0(int normType, boolean crossCheck);
private static native long BFMatcher_1(int normType);
private static native long BFMatcher_2();
// C++: static Ptr_BFMatcher cv::BFMatcher::create(int normType = NORM_L2, bool crossCheck = false)
private static native long create_0(int normType, boolean crossCheck);
private static native long create_1(int normType);
private static native long create_2();
// native support for java finalize()
private static native void delete(long nativeObj);
}