![JAR search and dependency download from the Maven repository](/logo.png)
org.opencv.ml.DTrees Maven / Gradle / Ivy
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.ml;
import org.opencv.core.Mat;
import org.opencv.ml.DTrees;
import org.opencv.ml.StatModel;
// C++: class DTrees
/**
* The class represents a single decision tree or a collection of decision trees.
*
* The current public interface of the class allows user to train only a single decision tree, however
* the class is capable of storing multiple decision trees and using them for prediction (by summing
* responses or using a voting schemes), and the derived from DTrees classes (such as RTrees and Boost)
* use this capability to implement decision tree ensembles.
*
* SEE: REF: ml_intro_trees
*/
public class DTrees extends StatModel {
protected DTrees(long addr) { super(addr); }
// internal usage only
public static DTrees __fromPtr__(long addr) { return new DTrees(addr); }
// C++: enum Flags
public static final int
PREDICT_AUTO = 0,
PREDICT_SUM = (1<<8),
PREDICT_MAX_VOTE = (2<<8),
PREDICT_MASK = (3<<8);
//
// C++: Mat cv::ml::DTrees::getPriors()
//
/**
* SEE: setPriors
* @return automatically generated
*/
public Mat getPriors() {
return new Mat(getPriors_0(nativeObj));
}
//
// C++: static Ptr_DTrees cv::ml::DTrees::create()
//
/**
* Creates the empty model
*
* The static method creates empty decision tree with the specified parameters. It should be then
* trained using train method (see StatModel::train). Alternatively, you can load the model from
* file using Algorithm::load<DTrees>(filename).
* @return automatically generated
*/
public static DTrees create() {
return DTrees.__fromPtr__(create_0());
}
//
// C++: static Ptr_DTrees cv::ml::DTrees::load(String filepath, String nodeName = String())
//
/**
* Loads and creates a serialized DTrees from a file
*
* Use DTree::save to serialize and store an DTree to disk.
* Load the DTree from this file again, by calling this function with the path to the file.
* Optionally specify the node for the file containing the classifier
*
* @param filepath path to serialized DTree
* @param nodeName name of node containing the classifier
* @return automatically generated
*/
public static DTrees load(String filepath, String nodeName) {
return DTrees.__fromPtr__(load_0(filepath, nodeName));
}
/**
* Loads and creates a serialized DTrees from a file
*
* Use DTree::save to serialize and store an DTree to disk.
* Load the DTree from this file again, by calling this function with the path to the file.
* Optionally specify the node for the file containing the classifier
*
* @param filepath path to serialized DTree
* @return automatically generated
*/
public static DTrees load(String filepath) {
return DTrees.__fromPtr__(load_1(filepath));
}
//
// C++: bool cv::ml::DTrees::getTruncatePrunedTree()
//
/**
* SEE: setTruncatePrunedTree
* @return automatically generated
*/
public boolean getTruncatePrunedTree() {
return getTruncatePrunedTree_0(nativeObj);
}
//
// C++: bool cv::ml::DTrees::getUse1SERule()
//
/**
* SEE: setUse1SERule
* @return automatically generated
*/
public boolean getUse1SERule() {
return getUse1SERule_0(nativeObj);
}
//
// C++: bool cv::ml::DTrees::getUseSurrogates()
//
/**
* SEE: setUseSurrogates
* @return automatically generated
*/
public boolean getUseSurrogates() {
return getUseSurrogates_0(nativeObj);
}
//
// C++: float cv::ml::DTrees::getRegressionAccuracy()
//
/**
* SEE: setRegressionAccuracy
* @return automatically generated
*/
public float getRegressionAccuracy() {
return getRegressionAccuracy_0(nativeObj);
}
//
// C++: int cv::ml::DTrees::getCVFolds()
//
/**
* SEE: setCVFolds
* @return automatically generated
*/
public int getCVFolds() {
return getCVFolds_0(nativeObj);
}
//
// C++: int cv::ml::DTrees::getMaxCategories()
//
/**
* SEE: setMaxCategories
* @return automatically generated
*/
public int getMaxCategories() {
return getMaxCategories_0(nativeObj);
}
//
// C++: int cv::ml::DTrees::getMaxDepth()
//
/**
* SEE: setMaxDepth
* @return automatically generated
*/
public int getMaxDepth() {
return getMaxDepth_0(nativeObj);
}
//
// C++: int cv::ml::DTrees::getMinSampleCount()
//
/**
* SEE: setMinSampleCount
* @return automatically generated
*/
public int getMinSampleCount() {
return getMinSampleCount_0(nativeObj);
}
//
// C++: void cv::ml::DTrees::setCVFolds(int val)
//
/**
* getCVFolds SEE: getCVFolds
* @param val automatically generated
*/
public void setCVFolds(int val) {
setCVFolds_0(nativeObj, val);
}
//
// C++: void cv::ml::DTrees::setMaxCategories(int val)
//
/**
* getMaxCategories SEE: getMaxCategories
* @param val automatically generated
*/
public void setMaxCategories(int val) {
setMaxCategories_0(nativeObj, val);
}
//
// C++: void cv::ml::DTrees::setMaxDepth(int val)
//
/**
* getMaxDepth SEE: getMaxDepth
* @param val automatically generated
*/
public void setMaxDepth(int val) {
setMaxDepth_0(nativeObj, val);
}
//
// C++: void cv::ml::DTrees::setMinSampleCount(int val)
//
/**
* getMinSampleCount SEE: getMinSampleCount
* @param val automatically generated
*/
public void setMinSampleCount(int val) {
setMinSampleCount_0(nativeObj, val);
}
//
// C++: void cv::ml::DTrees::setPriors(Mat val)
//
/**
* getPriors SEE: getPriors
* @param val automatically generated
*/
public void setPriors(Mat val) {
setPriors_0(nativeObj, val.nativeObj);
}
//
// C++: void cv::ml::DTrees::setRegressionAccuracy(float val)
//
/**
* getRegressionAccuracy SEE: getRegressionAccuracy
* @param val automatically generated
*/
public void setRegressionAccuracy(float val) {
setRegressionAccuracy_0(nativeObj, val);
}
//
// C++: void cv::ml::DTrees::setTruncatePrunedTree(bool val)
//
/**
* getTruncatePrunedTree SEE: getTruncatePrunedTree
* @param val automatically generated
*/
public void setTruncatePrunedTree(boolean val) {
setTruncatePrunedTree_0(nativeObj, val);
}
//
// C++: void cv::ml::DTrees::setUse1SERule(bool val)
//
/**
* getUse1SERule SEE: getUse1SERule
* @param val automatically generated
*/
public void setUse1SERule(boolean val) {
setUse1SERule_0(nativeObj, val);
}
//
// C++: void cv::ml::DTrees::setUseSurrogates(bool val)
//
/**
* getUseSurrogates SEE: getUseSurrogates
* @param val automatically generated
*/
public void setUseSurrogates(boolean val) {
setUseSurrogates_0(nativeObj, val);
}
@Override
protected void finalize() throws Throwable {
delete(nativeObj);
}
// C++: Mat cv::ml::DTrees::getPriors()
private static native long getPriors_0(long nativeObj);
// C++: static Ptr_DTrees cv::ml::DTrees::create()
private static native long create_0();
// C++: static Ptr_DTrees cv::ml::DTrees::load(String filepath, String nodeName = String())
private static native long load_0(String filepath, String nodeName);
private static native long load_1(String filepath);
// C++: bool cv::ml::DTrees::getTruncatePrunedTree()
private static native boolean getTruncatePrunedTree_0(long nativeObj);
// C++: bool cv::ml::DTrees::getUse1SERule()
private static native boolean getUse1SERule_0(long nativeObj);
// C++: bool cv::ml::DTrees::getUseSurrogates()
private static native boolean getUseSurrogates_0(long nativeObj);
// C++: float cv::ml::DTrees::getRegressionAccuracy()
private static native float getRegressionAccuracy_0(long nativeObj);
// C++: int cv::ml::DTrees::getCVFolds()
private static native int getCVFolds_0(long nativeObj);
// C++: int cv::ml::DTrees::getMaxCategories()
private static native int getMaxCategories_0(long nativeObj);
// C++: int cv::ml::DTrees::getMaxDepth()
private static native int getMaxDepth_0(long nativeObj);
// C++: int cv::ml::DTrees::getMinSampleCount()
private static native int getMinSampleCount_0(long nativeObj);
// C++: void cv::ml::DTrees::setCVFolds(int val)
private static native void setCVFolds_0(long nativeObj, int val);
// C++: void cv::ml::DTrees::setMaxCategories(int val)
private static native void setMaxCategories_0(long nativeObj, int val);
// C++: void cv::ml::DTrees::setMaxDepth(int val)
private static native void setMaxDepth_0(long nativeObj, int val);
// C++: void cv::ml::DTrees::setMinSampleCount(int val)
private static native void setMinSampleCount_0(long nativeObj, int val);
// C++: void cv::ml::DTrees::setPriors(Mat val)
private static native void setPriors_0(long nativeObj, long val_nativeObj);
// C++: void cv::ml::DTrees::setRegressionAccuracy(float val)
private static native void setRegressionAccuracy_0(long nativeObj, float val);
// C++: void cv::ml::DTrees::setTruncatePrunedTree(bool val)
private static native void setTruncatePrunedTree_0(long nativeObj, boolean val);
// C++: void cv::ml::DTrees::setUse1SERule(bool val)
private static native void setUse1SERule_0(long nativeObj, boolean val);
// C++: void cv::ml::DTrees::setUseSurrogates(bool val)
private static native void setUseSurrogates_0(long nativeObj, boolean val);
// native support for java finalize()
private static native void delete(long nativeObj);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy