All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bytedeco.opencv.opencv_ml.Boost Maven / Gradle / Ivy

There is a newer version: 4.10.0-1.5.11
Show newest version
// Targeted by JavaCPP version 1.5.4: DO NOT EDIT THIS FILE

package org.bytedeco.opencv.opencv_ml;

import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;

import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.openblas.global.openblas_nolapack.*;
import static org.bytedeco.openblas.global.openblas.*;
import org.bytedeco.opencv.opencv_core.*;
import static org.bytedeco.opencv.global.opencv_core.*;

import static org.bytedeco.opencv.global.opencv_ml.*;


/****************************************************************************************\
*                                   Boosted tree classifier                              *
\****************************************************************************************/

/** \brief Boosted tree classifier derived from DTrees

@see \ref ml_intro_boost */ @Namespace("cv::ml") @Properties(inherit = org.bytedeco.opencv.presets.opencv_ml.class) public class Boost extends DTrees { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ public Boost(Pointer p) { super(p); } /** Type of the boosting algorithm. See Boost::Types. Default value is Boost::REAL. */ /** @see setBoostType */ public native int getBoostType(); /** \copybrief getBoostType @see getBoostType */ public native void setBoostType(int val); /** The number of weak classifiers. Default value is 100. */ /** @see setWeakCount */ public native int getWeakCount(); /** \copybrief getWeakCount @see getWeakCount */ public native void setWeakCount(int val); /** A threshold between 0 and 1 used to save computational time. Samples with summary weight {@code \leq 1 - weight_trim_rate} do not participate in the *next* iteration of training. Set this parameter to 0 to turn off this functionality. Default value is 0.95.*/ /** @see setWeightTrimRate */ public native double getWeightTrimRate(); /** \copybrief getWeightTrimRate @see getWeightTrimRate */ public native void setWeightTrimRate(double val); /** Boosting type. Gentle AdaBoost and Real AdaBoost are often the preferable choices. */ /** enum cv::ml::Boost::Types */ public static final int /** Discrete AdaBoost. */ DISCRETE = 0, /** Real AdaBoost. It is a technique that utilizes confidence-rated predictions * and works well with categorical data. */ REAL = 1, /** LogitBoost. It can produce good regression fits. */ LOGIT = 2, /** Gentle AdaBoost. It puts less weight on outlier data points and for that * reason is often good with regression data. */ GENTLE = 3; /** Creates the empty model. Use StatModel::train to train the model, Algorithm::load\(filename) to load the pre-trained model. */ public static native @Ptr Boost create(); /** \brief Loads and creates a serialized Boost from a file * * Use Boost::save to serialize and store an RTree to disk. * Load the Boost from this file again, by calling this function with the path to the file. * Optionally specify the node for the file containing the classifier * * @param filepath path to serialized Boost * @param nodeName name of node containing the classifier */ public static native @Ptr Boost load(@Str BytePointer filepath, @Str BytePointer nodeName/*=cv::String()*/); public static native @Ptr Boost load(@Str BytePointer filepath); public static native @Ptr Boost load(@Str String filepath, @Str String nodeName/*=cv::String()*/); public static native @Ptr Boost load(@Str String filepath); }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy