All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bytedeco.opencv.opencv_ml.ParamGrid Maven / Gradle / Ivy

There is a newer version: 4.10.0-1.5.11
Show newest version
// Targeted by JavaCPP version 1.5.4: DO NOT EDIT THIS FILE

package org.bytedeco.opencv.opencv_ml;

import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;

import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.openblas.global.openblas_nolapack.*;
import static org.bytedeco.openblas.global.openblas.*;
import org.bytedeco.opencv.opencv_core.*;
import static org.bytedeco.opencv.global.opencv_core.*;

import static org.bytedeco.opencv.global.opencv_ml.*;


/** \brief The structure represents the logarithmic grid range of statmodel parameters.

It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate being computed by cross-validation. */ @Namespace("cv::ml") @NoOffset @Properties(inherit = org.bytedeco.opencv.presets.opencv_ml.class) public class ParamGrid extends Pointer { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ public ParamGrid(Pointer p) { super(p); } /** Native array allocator. Access with {@link Pointer#position(long)}. */ public ParamGrid(long size) { super((Pointer)null); allocateArray(size); } private native void allocateArray(long size); @Override public ParamGrid position(long position) { return (ParamGrid)super.position(position); } @Override public ParamGrid getPointer(long i) { return new ParamGrid(this).position(position + i); } /** \brief Default constructor */ public ParamGrid() { super((Pointer)null); allocate(); } private native void allocate(); /** \brief Constructor with parameters */ public ParamGrid(double _minVal, double _maxVal, double _logStep) { super((Pointer)null); allocate(_minVal, _maxVal, _logStep); } private native void allocate(double _minVal, double _maxVal, double _logStep); /** Minimum value of the statmodel parameter. Default value is 0. */ public native double minVal(); public native ParamGrid minVal(double setter); /** Maximum value of the statmodel parameter. Default value is 0. */ public native double maxVal(); public native ParamGrid maxVal(double setter); /** \brief Logarithmic step for iterating the statmodel parameter.

The grid determines the following iteration sequence of the statmodel parameter values:

{@code \[(minVal, minVal*step, minVal*{step}^2, \dots,  minVal*{logStep}^n),\]}
where {@code n} is the maximal index satisfying
{@code \[\texttt{minVal} * \texttt{logStep} ^n <  \texttt{maxVal}\]}
The grid is logarithmic, so logStep must always be greater than 1. Default value is 1. */ public native double logStep(); public native ParamGrid logStep(double setter); /** \brief Creates a ParamGrid Ptr that can be given to the %SVM::trainAuto method

@param minVal minimum value of the parameter grid @param maxVal maximum value of the parameter grid @param logstep Logarithmic step for iterating the statmodel parameter */ public static native @Ptr ParamGrid create(double minVal/*=0.*/, double maxVal/*=0.*/, double logstep/*=1.*/); public static native @Ptr ParamGrid create(); }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy