All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opencv.photo.Photo Maven / Gradle / Ivy

There is a newer version: 4.10.0-1.5.11
Show newest version
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.photo;

import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.Point;
import org.opencv.photo.AlignMTB;
import org.opencv.photo.CalibrateDebevec;
import org.opencv.photo.CalibrateRobertson;
import org.opencv.photo.MergeDebevec;
import org.opencv.photo.MergeMertens;
import org.opencv.photo.MergeRobertson;
import org.opencv.photo.Tonemap;
import org.opencv.photo.TonemapDrago;
import org.opencv.photo.TonemapMantiuk;
import org.opencv.photo.TonemapReinhard;
import org.opencv.utils.Converters;

// C++: class Photo

public class Photo {

    // C++: enum 
    public static final int
            INPAINT_NS = 0,
            INPAINT_TELEA = 1,
            LDR_SIZE = 256,
            NORMAL_CLONE = 1,
            MIXED_CLONE = 2,
            MONOCHROME_TRANSFER = 3,
            RECURS_FILTER = 1,
            NORMCONV_FILTER = 2;


    //
    // C++:  void cv::inpaint(Mat src, Mat inpaintMask, Mat& dst, double inpaintRadius, int flags)
    //

    /**
     * Restores the selected region in an image using the region neighborhood.
     *
     * @param src Input 8-bit, 16-bit unsigned or 32-bit float 1-channel or 8-bit 3-channel image.
     * @param inpaintMask Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that
     * needs to be inpainted.
     * @param dst Output image with the same size and type as src .
     * @param inpaintRadius Radius of a circular neighborhood of each point inpainted that is considered
     * by the algorithm.
     * @param flags Inpainting method that could be cv::INPAINT_NS or cv::INPAINT_TELEA
     *
     * The function reconstructs the selected image area from the pixel near the area boundary. The
     * function may be used to remove dust and scratches from a scanned photo, or to remove undesirable
     * objects from still images or video. See <http://en.wikipedia.org/wiki/Inpainting> for more details.
     *
     * Note:
     * 
    *
  • * An example using the inpainting technique can be found at * opencv_source_code/samples/cpp/inpaint.cpp *
  • *
  • * (Python) An example using the inpainting technique can be found at * opencv_source_code/samples/python/inpaint.py *
  • *
*/ public static void inpaint(Mat src, Mat inpaintMask, Mat dst, double inpaintRadius, int flags) { inpaint_0(src.nativeObj, inpaintMask.nativeObj, dst.nativeObj, inpaintRadius, flags); } // // C++: void cv::fastNlMeansDenoising(Mat src, Mat& dst, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21) // /** * Perform image denoising using Non-local Means Denoising algorithm * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational * optimizations. Noise expected to be a gaussian white noise * * @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image. * @param dst Output image with the same size and type as src . * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength. Big h value perfectly removes noise but also * removes image details, smaller h value preserves details but also preserves some noise * * This function expected to be applied to grayscale images. For colored images look at * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting * image to CIELAB colorspace and then separately denoise L and AB components with different h * parameter. */ public static void fastNlMeansDenoising(Mat src, Mat dst, float h, int templateWindowSize, int searchWindowSize) { fastNlMeansDenoising_0(src.nativeObj, dst.nativeObj, h, templateWindowSize, searchWindowSize); } /** * Perform image denoising using Non-local Means Denoising algorithm * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational * optimizations. Noise expected to be a gaussian white noise * * @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image. * @param dst Output image with the same size and type as src . * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength. Big h value perfectly removes noise but also * removes image details, smaller h value preserves details but also preserves some noise * * This function expected to be applied to grayscale images. For colored images look at * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting * image to CIELAB colorspace and then separately denoise L and AB components with different h * parameter. */ public static void fastNlMeansDenoising(Mat src, Mat dst, float h, int templateWindowSize) { fastNlMeansDenoising_1(src.nativeObj, dst.nativeObj, h, templateWindowSize); } /** * Perform image denoising using Non-local Means Denoising algorithm * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational * optimizations. Noise expected to be a gaussian white noise * * @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image. * @param dst Output image with the same size and type as src . * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength. Big h value perfectly removes noise but also * removes image details, smaller h value preserves details but also preserves some noise * * This function expected to be applied to grayscale images. For colored images look at * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting * image to CIELAB colorspace and then separately denoise L and AB components with different h * parameter. */ public static void fastNlMeansDenoising(Mat src, Mat dst, float h) { fastNlMeansDenoising_2(src.nativeObj, dst.nativeObj, h); } /** * Perform image denoising using Non-local Means Denoising algorithm * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational * optimizations. Noise expected to be a gaussian white noise * * @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image. * @param dst Output image with the same size and type as src . * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * removes image details, smaller h value preserves details but also preserves some noise * * This function expected to be applied to grayscale images. For colored images look at * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting * image to CIELAB colorspace and then separately denoise L and AB components with different h * parameter. */ public static void fastNlMeansDenoising(Mat src, Mat dst) { fastNlMeansDenoising_3(src.nativeObj, dst.nativeObj); } // // C++: void cv::fastNlMeansDenoising(Mat src, Mat& dst, vector_float h, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2) // /** * Perform image denoising using Non-local Means Denoising algorithm * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational * optimizations. Noise expected to be a gaussian white noise * * @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel, * 2-channel, 3-channel or 4-channel image. * @param dst Output image with the same size and type as src . * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Array of parameters regulating filter strength, either one * parameter applied to all channels or one per channel in dst. Big h value * perfectly removes noise but also removes image details, smaller h * value preserves details but also preserves some noise * @param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1 * * This function expected to be applied to grayscale images. For colored images look at * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting * image to CIELAB colorspace and then separately denoise L and AB components with different h * parameter. */ public static void fastNlMeansDenoising(Mat src, Mat dst, MatOfFloat h, int templateWindowSize, int searchWindowSize, int normType) { Mat h_mat = h; fastNlMeansDenoising_4(src.nativeObj, dst.nativeObj, h_mat.nativeObj, templateWindowSize, searchWindowSize, normType); } /** * Perform image denoising using Non-local Means Denoising algorithm * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational * optimizations. Noise expected to be a gaussian white noise * * @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel, * 2-channel, 3-channel or 4-channel image. * @param dst Output image with the same size and type as src . * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Array of parameters regulating filter strength, either one * parameter applied to all channels or one per channel in dst. Big h value * perfectly removes noise but also removes image details, smaller h * value preserves details but also preserves some noise * * This function expected to be applied to grayscale images. For colored images look at * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting * image to CIELAB colorspace and then separately denoise L and AB components with different h * parameter. */ public static void fastNlMeansDenoising(Mat src, Mat dst, MatOfFloat h, int templateWindowSize, int searchWindowSize) { Mat h_mat = h; fastNlMeansDenoising_5(src.nativeObj, dst.nativeObj, h_mat.nativeObj, templateWindowSize, searchWindowSize); } /** * Perform image denoising using Non-local Means Denoising algorithm * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational * optimizations. Noise expected to be a gaussian white noise * * @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel, * 2-channel, 3-channel or 4-channel image. * @param dst Output image with the same size and type as src . * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Array of parameters regulating filter strength, either one * parameter applied to all channels or one per channel in dst. Big h value * perfectly removes noise but also removes image details, smaller h * value preserves details but also preserves some noise * * This function expected to be applied to grayscale images. For colored images look at * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting * image to CIELAB colorspace and then separately denoise L and AB components with different h * parameter. */ public static void fastNlMeansDenoising(Mat src, Mat dst, MatOfFloat h, int templateWindowSize) { Mat h_mat = h; fastNlMeansDenoising_6(src.nativeObj, dst.nativeObj, h_mat.nativeObj, templateWindowSize); } /** * Perform image denoising using Non-local Means Denoising algorithm * <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational * optimizations. Noise expected to be a gaussian white noise * * @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel, * 2-channel, 3-channel or 4-channel image. * @param dst Output image with the same size and type as src . * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Array of parameters regulating filter strength, either one * parameter applied to all channels or one per channel in dst. Big h value * perfectly removes noise but also removes image details, smaller h * value preserves details but also preserves some noise * * This function expected to be applied to grayscale images. For colored images look at * fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored * image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting * image to CIELAB colorspace and then separately denoise L and AB components with different h * parameter. */ public static void fastNlMeansDenoising(Mat src, Mat dst, MatOfFloat h) { Mat h_mat = h; fastNlMeansDenoising_7(src.nativeObj, dst.nativeObj, h_mat.nativeObj); } // // C++: void cv::fastNlMeansDenoisingColored(Mat src, Mat& dst, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21) // /** * Modification of fastNlMeansDenoising function for colored images * * @param src Input 8-bit 3-channel image. * @param dst Output image with the same size and type as src . * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly * removes noise but also removes image details, smaller h value preserves details but also preserves * some noise * @param hColor The same as h but for color components. For most images value equals 10 * will be enough to remove colored noise and do not distort colors * * The function converts image to CIELAB colorspace and then separately denoise L and AB components * with given h parameters using fastNlMeansDenoising function. */ public static void fastNlMeansDenoisingColored(Mat src, Mat dst, float h, float hColor, int templateWindowSize, int searchWindowSize) { fastNlMeansDenoisingColored_0(src.nativeObj, dst.nativeObj, h, hColor, templateWindowSize, searchWindowSize); } /** * Modification of fastNlMeansDenoising function for colored images * * @param src Input 8-bit 3-channel image. * @param dst Output image with the same size and type as src . * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly * removes noise but also removes image details, smaller h value preserves details but also preserves * some noise * @param hColor The same as h but for color components. For most images value equals 10 * will be enough to remove colored noise and do not distort colors * * The function converts image to CIELAB colorspace and then separately denoise L and AB components * with given h parameters using fastNlMeansDenoising function. */ public static void fastNlMeansDenoisingColored(Mat src, Mat dst, float h, float hColor, int templateWindowSize) { fastNlMeansDenoisingColored_1(src.nativeObj, dst.nativeObj, h, hColor, templateWindowSize); } /** * Modification of fastNlMeansDenoising function for colored images * * @param src Input 8-bit 3-channel image. * @param dst Output image with the same size and type as src . * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly * removes noise but also removes image details, smaller h value preserves details but also preserves * some noise * @param hColor The same as h but for color components. For most images value equals 10 * will be enough to remove colored noise and do not distort colors * * The function converts image to CIELAB colorspace and then separately denoise L and AB components * with given h parameters using fastNlMeansDenoising function. */ public static void fastNlMeansDenoisingColored(Mat src, Mat dst, float h, float hColor) { fastNlMeansDenoisingColored_2(src.nativeObj, dst.nativeObj, h, hColor); } /** * Modification of fastNlMeansDenoising function for colored images * * @param src Input 8-bit 3-channel image. * @param dst Output image with the same size and type as src . * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly * removes noise but also removes image details, smaller h value preserves details but also preserves * some noise * will be enough to remove colored noise and do not distort colors * * The function converts image to CIELAB colorspace and then separately denoise L and AB components * with given h parameters using fastNlMeansDenoising function. */ public static void fastNlMeansDenoisingColored(Mat src, Mat dst, float h) { fastNlMeansDenoisingColored_3(src.nativeObj, dst.nativeObj, h); } /** * Modification of fastNlMeansDenoising function for colored images * * @param src Input 8-bit 3-channel image. * @param dst Output image with the same size and type as src . * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * removes noise but also removes image details, smaller h value preserves details but also preserves * some noise * will be enough to remove colored noise and do not distort colors * * The function converts image to CIELAB colorspace and then separately denoise L and AB components * with given h parameters using fastNlMeansDenoising function. */ public static void fastNlMeansDenoisingColored(Mat src, Mat dst) { fastNlMeansDenoisingColored_4(src.nativeObj, dst.nativeObj); } // // C++: void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21) // /** * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been * captured in small period of time. For example video. This version of the function is for grayscale * images or for manual manipulation with colorspaces. For more details see * <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394> * * @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or * 4-channel images sequence. All images should have the same type and * size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength. Bigger h value * perfectly removes noise but also removes image details, smaller h * value preserves details but also preserves some noise */ public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); fastNlMeansDenoisingMulti_0(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize, searchWindowSize); } /** * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been * captured in small period of time. For example video. This version of the function is for grayscale * images or for manual manipulation with colorspaces. For more details see * <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394> * * @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or * 4-channel images sequence. All images should have the same type and * size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength. Bigger h value * perfectly removes noise but also removes image details, smaller h * value preserves details but also preserves some noise */ public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); fastNlMeansDenoisingMulti_1(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize); } /** * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been * captured in small period of time. For example video. This version of the function is for grayscale * images or for manual manipulation with colorspaces. For more details see * <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394> * * @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or * 4-channel images sequence. All images should have the same type and * size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength. Bigger h value * perfectly removes noise but also removes image details, smaller h * value preserves details but also preserves some noise */ public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); fastNlMeansDenoisingMulti_2(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h); } /** * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been * captured in small period of time. For example video. This version of the function is for grayscale * images or for manual manipulation with colorspaces. For more details see * <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394> * * @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or * 4-channel images sequence. All images should have the same type and * size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * perfectly removes noise but also removes image details, smaller h * value preserves details but also preserves some noise */ public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); fastNlMeansDenoisingMulti_3(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize); } // // C++: void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, vector_float h, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2) // /** * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been * captured in small period of time. For example video. This version of the function is for grayscale * images or for manual manipulation with colorspaces. For more details see * <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394> * * @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel, * 2-channel, 3-channel or 4-channel images sequence. All images should * have the same type and size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Array of parameters regulating filter strength, either one * parameter applied to all channels or one per channel in dst. Big h value * perfectly removes noise but also removes image details, smaller h * value preserves details but also preserves some noise * @param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1 */ public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, MatOfFloat h, int templateWindowSize, int searchWindowSize, int normType) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); Mat h_mat = h; fastNlMeansDenoisingMulti_4(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h_mat.nativeObj, templateWindowSize, searchWindowSize, normType); } /** * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been * captured in small period of time. For example video. This version of the function is for grayscale * images or for manual manipulation with colorspaces. For more details see * <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394> * * @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel, * 2-channel, 3-channel or 4-channel images sequence. All images should * have the same type and size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Array of parameters regulating filter strength, either one * parameter applied to all channels or one per channel in dst. Big h value * perfectly removes noise but also removes image details, smaller h * value preserves details but also preserves some noise */ public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, MatOfFloat h, int templateWindowSize, int searchWindowSize) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); Mat h_mat = h; fastNlMeansDenoisingMulti_5(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h_mat.nativeObj, templateWindowSize, searchWindowSize); } /** * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been * captured in small period of time. For example video. This version of the function is for grayscale * images or for manual manipulation with colorspaces. For more details see * <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394> * * @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel, * 2-channel, 3-channel or 4-channel images sequence. All images should * have the same type and size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Array of parameters regulating filter strength, either one * parameter applied to all channels or one per channel in dst. Big h value * perfectly removes noise but also removes image details, smaller h * value preserves details but also preserves some noise */ public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, MatOfFloat h, int templateWindowSize) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); Mat h_mat = h; fastNlMeansDenoisingMulti_6(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h_mat.nativeObj, templateWindowSize); } /** * Modification of fastNlMeansDenoising function for images sequence where consecutive images have been * captured in small period of time. For example video. This version of the function is for grayscale * images or for manual manipulation with colorspaces. For more details see * <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394> * * @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel, * 2-channel, 3-channel or 4-channel images sequence. All images should * have the same type and size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Array of parameters regulating filter strength, either one * parameter applied to all channels or one per channel in dst. Big h value * perfectly removes noise but also removes image details, smaller h * value preserves details but also preserves some noise */ public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, MatOfFloat h) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); Mat h_mat = h; fastNlMeansDenoisingMulti_7(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h_mat.nativeObj); } // // C++: void cv::fastNlMeansDenoisingColoredMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21) // /** * Modification of fastNlMeansDenoisingMulti function for colored images sequences * * @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and * size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * @param searchWindowSize Size in pixels of the window that is used to compute weighted average for * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly * removes noise but also removes image details, smaller h value preserves details but also preserves * some noise. * @param hColor The same as h but for color components. * * The function converts images to CIELAB colorspace and then separately denoise L and AB components * with given h parameters using fastNlMeansDenoisingMulti function. */ public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); fastNlMeansDenoisingColoredMulti_0(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, hColor, templateWindowSize, searchWindowSize); } /** * Modification of fastNlMeansDenoisingMulti function for colored images sequences * * @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and * size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * @param templateWindowSize Size in pixels of the template patch that is used to compute weights. * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly * removes noise but also removes image details, smaller h value preserves details but also preserves * some noise. * @param hColor The same as h but for color components. * * The function converts images to CIELAB colorspace and then separately denoise L and AB components * with given h parameters using fastNlMeansDenoisingMulti function. */ public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); fastNlMeansDenoisingColoredMulti_1(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, hColor, templateWindowSize); } /** * Modification of fastNlMeansDenoisingMulti function for colored images sequences * * @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and * size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly * removes noise but also removes image details, smaller h value preserves details but also preserves * some noise. * @param hColor The same as h but for color components. * * The function converts images to CIELAB colorspace and then separately denoise L and AB components * with given h parameters using fastNlMeansDenoisingMulti function. */ public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); fastNlMeansDenoisingColoredMulti_2(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, hColor); } /** * Modification of fastNlMeansDenoisingMulti function for colored images sequences * * @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and * size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly * removes noise but also removes image details, smaller h value preserves details but also preserves * some noise. * * The function converts images to CIELAB colorspace and then separately denoise L and AB components * with given h parameters using fastNlMeansDenoisingMulti function. */ public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); fastNlMeansDenoisingColoredMulti_3(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h); } /** * Modification of fastNlMeansDenoisingMulti function for colored images sequences * * @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and * size. * @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence * @param temporalWindowSize Number of surrounding images to use for target image denoising. Should * be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to * imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise * srcImgs[imgToDenoiseIndex] image. * @param dst Output image with the same size and type as srcImgs images. * Should be odd. Recommended value 7 pixels * given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater * denoising time. Recommended value 21 pixels * removes noise but also removes image details, smaller h value preserves details but also preserves * some noise. * * The function converts images to CIELAB colorspace and then separately denoise L and AB components * with given h parameters using fastNlMeansDenoisingMulti function. */ public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize) { Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs); fastNlMeansDenoisingColoredMulti_4(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize); } // // C++: void cv::denoise_TVL1(vector_Mat observations, Mat result, double lambda = 1.0, int niters = 30) // /** * Primal-dual algorithm is an algorithm for solving special types of variational problems (that is, * finding a function to minimize some functional). As the image denoising, in particular, may be seen * as the variational problem, primal-dual algorithm then can be used to perform denoising and this is * exactly what is implemented. * * It should be noted, that this implementation was taken from the July 2013 blog entry * CITE: MA13 , which also contained (slightly more general) ready-to-use source code on Python. * Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end * of July 2013 and finally it was slightly adapted by later authors. * * Although the thorough discussion and justification of the algorithm involved may be found in * CITE: ChambolleEtAl, it might make sense to skim over it here, following CITE: MA13 . To begin * with, we consider the 1-byte gray-level images as the functions from the rectangular domain of * pixels (it may be seen as set * \(\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}\) for some * \(m,\;n\in\mathbb{N}\)) into \(\{0,1,\dots,255\}\). We shall denote the noised images as \(f_i\) and with * this view, given some image \(x\) of the same size, we may measure how bad it is by the formula * * \(\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\) * * \(\|\|\cdot\|\|\) here denotes \(L_2\)-norm and as you see, the first addend states that we want our * image to be smooth (ideally, having zero gradient, thus being constant) and the second states that * we want our result to be close to the observations we've got. If we treat \(x\) as a function, this is * exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play. * * @param observations This array should contain one or more noised versions of the image that is to * be restored. * @param result Here the denoised image will be stored. There is no need to do pre-allocation of * storage space, as it will be automatically allocated, if necessary. * @param lambda Corresponds to \(\lambda\) in the formulas above. As it is enlarged, the smooth * (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly * speaking, as it becomes smaller, the result will be more blur but more sever outliers will be * removed. * @param niters Number of iterations that the algorithm will run. Of course, as more iterations as * better, but it is hard to quantitatively refine this statement, so just use the default and * increase it if the results are poor. */ public static void denoise_TVL1(List observations, Mat result, double lambda, int niters) { Mat observations_mat = Converters.vector_Mat_to_Mat(observations); denoise_TVL1_0(observations_mat.nativeObj, result.nativeObj, lambda, niters); } /** * Primal-dual algorithm is an algorithm for solving special types of variational problems (that is, * finding a function to minimize some functional). As the image denoising, in particular, may be seen * as the variational problem, primal-dual algorithm then can be used to perform denoising and this is * exactly what is implemented. * * It should be noted, that this implementation was taken from the July 2013 blog entry * CITE: MA13 , which also contained (slightly more general) ready-to-use source code on Python. * Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end * of July 2013 and finally it was slightly adapted by later authors. * * Although the thorough discussion and justification of the algorithm involved may be found in * CITE: ChambolleEtAl, it might make sense to skim over it here, following CITE: MA13 . To begin * with, we consider the 1-byte gray-level images as the functions from the rectangular domain of * pixels (it may be seen as set * \(\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}\) for some * \(m,\;n\in\mathbb{N}\)) into \(\{0,1,\dots,255\}\). We shall denote the noised images as \(f_i\) and with * this view, given some image \(x\) of the same size, we may measure how bad it is by the formula * * \(\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\) * * \(\|\|\cdot\|\|\) here denotes \(L_2\)-norm and as you see, the first addend states that we want our * image to be smooth (ideally, having zero gradient, thus being constant) and the second states that * we want our result to be close to the observations we've got. If we treat \(x\) as a function, this is * exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play. * * @param observations This array should contain one or more noised versions of the image that is to * be restored. * @param result Here the denoised image will be stored. There is no need to do pre-allocation of * storage space, as it will be automatically allocated, if necessary. * @param lambda Corresponds to \(\lambda\) in the formulas above. As it is enlarged, the smooth * (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly * speaking, as it becomes smaller, the result will be more blur but more sever outliers will be * removed. * better, but it is hard to quantitatively refine this statement, so just use the default and * increase it if the results are poor. */ public static void denoise_TVL1(List observations, Mat result, double lambda) { Mat observations_mat = Converters.vector_Mat_to_Mat(observations); denoise_TVL1_1(observations_mat.nativeObj, result.nativeObj, lambda); } /** * Primal-dual algorithm is an algorithm for solving special types of variational problems (that is, * finding a function to minimize some functional). As the image denoising, in particular, may be seen * as the variational problem, primal-dual algorithm then can be used to perform denoising and this is * exactly what is implemented. * * It should be noted, that this implementation was taken from the July 2013 blog entry * CITE: MA13 , which also contained (slightly more general) ready-to-use source code on Python. * Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end * of July 2013 and finally it was slightly adapted by later authors. * * Although the thorough discussion and justification of the algorithm involved may be found in * CITE: ChambolleEtAl, it might make sense to skim over it here, following CITE: MA13 . To begin * with, we consider the 1-byte gray-level images as the functions from the rectangular domain of * pixels (it may be seen as set * \(\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}\) for some * \(m,\;n\in\mathbb{N}\)) into \(\{0,1,\dots,255\}\). We shall denote the noised images as \(f_i\) and with * this view, given some image \(x\) of the same size, we may measure how bad it is by the formula * * \(\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\) * * \(\|\|\cdot\|\|\) here denotes \(L_2\)-norm and as you see, the first addend states that we want our * image to be smooth (ideally, having zero gradient, thus being constant) and the second states that * we want our result to be close to the observations we've got. If we treat \(x\) as a function, this is * exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play. * * @param observations This array should contain one or more noised versions of the image that is to * be restored. * @param result Here the denoised image will be stored. There is no need to do pre-allocation of * storage space, as it will be automatically allocated, if necessary. * (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly * speaking, as it becomes smaller, the result will be more blur but more sever outliers will be * removed. * better, but it is hard to quantitatively refine this statement, so just use the default and * increase it if the results are poor. */ public static void denoise_TVL1(List observations, Mat result) { Mat observations_mat = Converters.vector_Mat_to_Mat(observations); denoise_TVL1_2(observations_mat.nativeObj, result.nativeObj); } // // C++: Ptr_Tonemap cv::createTonemap(float gamma = 1.0f) // /** * Creates simple linear mapper with gamma correction * * @param gamma positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma * equal to 2.2f is suitable for most displays. * Generally gamma > 1 brightens the image and gamma < 1 darkens it. * @return automatically generated */ public static Tonemap createTonemap(float gamma) { return Tonemap.__fromPtr__(createTonemap_0(gamma)); } /** * Creates simple linear mapper with gamma correction * * equal to 2.2f is suitable for most displays. * Generally gamma > 1 brightens the image and gamma < 1 darkens it. * @return automatically generated */ public static Tonemap createTonemap() { return Tonemap.__fromPtr__(createTonemap_1()); } // // C++: Ptr_TonemapDrago cv::createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f) // /** * Creates TonemapDrago object * * @param gamma gamma value for gamma correction. See createTonemap * @param saturation positive saturation enhancement value. 1.0 preserves saturation, values greater * than 1 increase saturation and values less than 1 decrease it. * @param bias value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best * results, default value is 0.85. * @return automatically generated */ public static TonemapDrago createTonemapDrago(float gamma, float saturation, float bias) { return TonemapDrago.__fromPtr__(createTonemapDrago_0(gamma, saturation, bias)); } /** * Creates TonemapDrago object * * @param gamma gamma value for gamma correction. See createTonemap * @param saturation positive saturation enhancement value. 1.0 preserves saturation, values greater * than 1 increase saturation and values less than 1 decrease it. * results, default value is 0.85. * @return automatically generated */ public static TonemapDrago createTonemapDrago(float gamma, float saturation) { return TonemapDrago.__fromPtr__(createTonemapDrago_1(gamma, saturation)); } /** * Creates TonemapDrago object * * @param gamma gamma value for gamma correction. See createTonemap * than 1 increase saturation and values less than 1 decrease it. * results, default value is 0.85. * @return automatically generated */ public static TonemapDrago createTonemapDrago(float gamma) { return TonemapDrago.__fromPtr__(createTonemapDrago_2(gamma)); } /** * Creates TonemapDrago object * * than 1 increase saturation and values less than 1 decrease it. * results, default value is 0.85. * @return automatically generated */ public static TonemapDrago createTonemapDrago() { return TonemapDrago.__fromPtr__(createTonemapDrago_3()); } // // C++: Ptr_TonemapReinhard cv::createTonemapReinhard(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f) // /** * Creates TonemapReinhard object * * @param gamma gamma value for gamma correction. See createTonemap * @param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results. * @param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel * value, if 0 it's global, otherwise it's a weighted mean of this two cases. * @param color_adapt chromatic adaptation in [0, 1] range. If 1 channels are treated independently, * if 0 adaptation level is the same for each channel. * @return automatically generated */ public static TonemapReinhard createTonemapReinhard(float gamma, float intensity, float light_adapt, float color_adapt) { return TonemapReinhard.__fromPtr__(createTonemapReinhard_0(gamma, intensity, light_adapt, color_adapt)); } /** * Creates TonemapReinhard object * * @param gamma gamma value for gamma correction. See createTonemap * @param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results. * @param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel * value, if 0 it's global, otherwise it's a weighted mean of this two cases. * if 0 adaptation level is the same for each channel. * @return automatically generated */ public static TonemapReinhard createTonemapReinhard(float gamma, float intensity, float light_adapt) { return TonemapReinhard.__fromPtr__(createTonemapReinhard_1(gamma, intensity, light_adapt)); } /** * Creates TonemapReinhard object * * @param gamma gamma value for gamma correction. See createTonemap * @param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results. * value, if 0 it's global, otherwise it's a weighted mean of this two cases. * if 0 adaptation level is the same for each channel. * @return automatically generated */ public static TonemapReinhard createTonemapReinhard(float gamma, float intensity) { return TonemapReinhard.__fromPtr__(createTonemapReinhard_2(gamma, intensity)); } /** * Creates TonemapReinhard object * * @param gamma gamma value for gamma correction. See createTonemap * value, if 0 it's global, otherwise it's a weighted mean of this two cases. * if 0 adaptation level is the same for each channel. * @return automatically generated */ public static TonemapReinhard createTonemapReinhard(float gamma) { return TonemapReinhard.__fromPtr__(createTonemapReinhard_3(gamma)); } /** * Creates TonemapReinhard object * * value, if 0 it's global, otherwise it's a weighted mean of this two cases. * if 0 adaptation level is the same for each channel. * @return automatically generated */ public static TonemapReinhard createTonemapReinhard() { return TonemapReinhard.__fromPtr__(createTonemapReinhard_4()); } // // C++: Ptr_TonemapMantiuk cv::createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f) // /** * Creates TonemapMantiuk object * * @param gamma gamma value for gamma correction. See createTonemap * @param scale contrast scale factor. HVS response is multiplied by this parameter, thus compressing * dynamic range. Values from 0.6 to 0.9 produce best results. * @param saturation saturation enhancement value. See createTonemapDrago * @return automatically generated */ public static TonemapMantiuk createTonemapMantiuk(float gamma, float scale, float saturation) { return TonemapMantiuk.__fromPtr__(createTonemapMantiuk_0(gamma, scale, saturation)); } /** * Creates TonemapMantiuk object * * @param gamma gamma value for gamma correction. See createTonemap * @param scale contrast scale factor. HVS response is multiplied by this parameter, thus compressing * dynamic range. Values from 0.6 to 0.9 produce best results. * @return automatically generated */ public static TonemapMantiuk createTonemapMantiuk(float gamma, float scale) { return TonemapMantiuk.__fromPtr__(createTonemapMantiuk_1(gamma, scale)); } /** * Creates TonemapMantiuk object * * @param gamma gamma value for gamma correction. See createTonemap * dynamic range. Values from 0.6 to 0.9 produce best results. * @return automatically generated */ public static TonemapMantiuk createTonemapMantiuk(float gamma) { return TonemapMantiuk.__fromPtr__(createTonemapMantiuk_2(gamma)); } /** * Creates TonemapMantiuk object * * dynamic range. Values from 0.6 to 0.9 produce best results. * @return automatically generated */ public static TonemapMantiuk createTonemapMantiuk() { return TonemapMantiuk.__fromPtr__(createTonemapMantiuk_3()); } // // C++: Ptr_AlignMTB cv::createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true) // /** * Creates AlignMTB object * * @param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are * usually good enough (31 and 63 pixels shift respectively). * @param exclude_range range for exclusion bitmap that is constructed to suppress noise around the * median value. * @param cut if true cuts images, otherwise fills the new regions with zeros. * @return automatically generated */ public static AlignMTB createAlignMTB(int max_bits, int exclude_range, boolean cut) { return AlignMTB.__fromPtr__(createAlignMTB_0(max_bits, exclude_range, cut)); } /** * Creates AlignMTB object * * @param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are * usually good enough (31 and 63 pixels shift respectively). * @param exclude_range range for exclusion bitmap that is constructed to suppress noise around the * median value. * @return automatically generated */ public static AlignMTB createAlignMTB(int max_bits, int exclude_range) { return AlignMTB.__fromPtr__(createAlignMTB_1(max_bits, exclude_range)); } /** * Creates AlignMTB object * * @param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are * usually good enough (31 and 63 pixels shift respectively). * median value. * @return automatically generated */ public static AlignMTB createAlignMTB(int max_bits) { return AlignMTB.__fromPtr__(createAlignMTB_2(max_bits)); } /** * Creates AlignMTB object * * usually good enough (31 and 63 pixels shift respectively). * median value. * @return automatically generated */ public static AlignMTB createAlignMTB() { return AlignMTB.__fromPtr__(createAlignMTB_3()); } // // C++: Ptr_CalibrateDebevec cv::createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false) // /** * Creates CalibrateDebevec object * * @param samples number of pixel locations to use * @param lambda smoothness term weight. Greater values produce smoother results, but can alter the * response. * @param random if true sample pixel locations are chosen at random, otherwise they form a * rectangular grid. * @return automatically generated */ public static CalibrateDebevec createCalibrateDebevec(int samples, float lambda, boolean random) { return CalibrateDebevec.__fromPtr__(createCalibrateDebevec_0(samples, lambda, random)); } /** * Creates CalibrateDebevec object * * @param samples number of pixel locations to use * @param lambda smoothness term weight. Greater values produce smoother results, but can alter the * response. * rectangular grid. * @return automatically generated */ public static CalibrateDebevec createCalibrateDebevec(int samples, float lambda) { return CalibrateDebevec.__fromPtr__(createCalibrateDebevec_1(samples, lambda)); } /** * Creates CalibrateDebevec object * * @param samples number of pixel locations to use * response. * rectangular grid. * @return automatically generated */ public static CalibrateDebevec createCalibrateDebevec(int samples) { return CalibrateDebevec.__fromPtr__(createCalibrateDebevec_2(samples)); } /** * Creates CalibrateDebevec object * * response. * rectangular grid. * @return automatically generated */ public static CalibrateDebevec createCalibrateDebevec() { return CalibrateDebevec.__fromPtr__(createCalibrateDebevec_3()); } // // C++: Ptr_CalibrateRobertson cv::createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f) // /** * Creates CalibrateRobertson object * * @param max_iter maximal number of Gauss-Seidel solver iterations. * @param threshold target difference between results of two successive steps of the minimization. * @return automatically generated */ public static CalibrateRobertson createCalibrateRobertson(int max_iter, float threshold) { return CalibrateRobertson.__fromPtr__(createCalibrateRobertson_0(max_iter, threshold)); } /** * Creates CalibrateRobertson object * * @param max_iter maximal number of Gauss-Seidel solver iterations. * @return automatically generated */ public static CalibrateRobertson createCalibrateRobertson(int max_iter) { return CalibrateRobertson.__fromPtr__(createCalibrateRobertson_1(max_iter)); } /** * Creates CalibrateRobertson object * * @return automatically generated */ public static CalibrateRobertson createCalibrateRobertson() { return CalibrateRobertson.__fromPtr__(createCalibrateRobertson_2()); } // // C++: Ptr_MergeDebevec cv::createMergeDebevec() // /** * Creates MergeDebevec object * @return automatically generated */ public static MergeDebevec createMergeDebevec() { return MergeDebevec.__fromPtr__(createMergeDebevec_0()); } // // C++: Ptr_MergeMertens cv::createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f) // /** * Creates MergeMertens object * * @param contrast_weight contrast measure weight. See MergeMertens. * @param saturation_weight saturation measure weight * @param exposure_weight well-exposedness measure weight * @return automatically generated */ public static MergeMertens createMergeMertens(float contrast_weight, float saturation_weight, float exposure_weight) { return MergeMertens.__fromPtr__(createMergeMertens_0(contrast_weight, saturation_weight, exposure_weight)); } /** * Creates MergeMertens object * * @param contrast_weight contrast measure weight. See MergeMertens. * @param saturation_weight saturation measure weight * @return automatically generated */ public static MergeMertens createMergeMertens(float contrast_weight, float saturation_weight) { return MergeMertens.__fromPtr__(createMergeMertens_1(contrast_weight, saturation_weight)); } /** * Creates MergeMertens object * * @param contrast_weight contrast measure weight. See MergeMertens. * @return automatically generated */ public static MergeMertens createMergeMertens(float contrast_weight) { return MergeMertens.__fromPtr__(createMergeMertens_2(contrast_weight)); } /** * Creates MergeMertens object * * @return automatically generated */ public static MergeMertens createMergeMertens() { return MergeMertens.__fromPtr__(createMergeMertens_3()); } // // C++: Ptr_MergeRobertson cv::createMergeRobertson() // /** * Creates MergeRobertson object * @return automatically generated */ public static MergeRobertson createMergeRobertson() { return MergeRobertson.__fromPtr__(createMergeRobertson_0()); } // // C++: void cv::decolor(Mat src, Mat& grayscale, Mat& color_boost) // /** * Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized * black-and-white photograph rendering, and in many single channel image processing applications * CITE: CL12 . * * @param src Input 8-bit 3-channel image. * @param grayscale Output 8-bit 1-channel image. * @param color_boost Output 8-bit 3-channel image. * * This function is to be applied on color images. */ public static void decolor(Mat src, Mat grayscale, Mat color_boost) { decolor_0(src.nativeObj, grayscale.nativeObj, color_boost.nativeObj); } // // C++: void cv::seamlessClone(Mat src, Mat dst, Mat mask, Point p, Mat& blend, int flags) // /** * Image editing tasks concern either global changes (color/intensity corrections, filters, * deformations) or local changes concerned to a selection. Here we are interested in achieving local * changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless * manner. The extent of the changes ranges from slight distortions to complete replacement by novel * content CITE: PM03 . * * @param src Input 8-bit 3-channel image. * @param dst Input 8-bit 3-channel image. * @param mask Input 8-bit 1 or 3-channel image. * @param p Point in dst image where object is placed. * @param blend Output image with the same size and type as dst. * @param flags Cloning method that could be cv::NORMAL_CLONE, cv::MIXED_CLONE or cv::MONOCHROME_TRANSFER */ public static void seamlessClone(Mat src, Mat dst, Mat mask, Point p, Mat blend, int flags) { seamlessClone_0(src.nativeObj, dst.nativeObj, mask.nativeObj, p.x, p.y, blend.nativeObj, flags); } // // C++: void cv::colorChange(Mat src, Mat mask, Mat& dst, float red_mul = 1.0f, float green_mul = 1.0f, float blue_mul = 1.0f) // /** * Given an original color image, two differently colored versions of this image can be mixed * seamlessly. * * @param src Input 8-bit 3-channel image. * @param mask Input 8-bit 1 or 3-channel image. * @param dst Output image with the same size and type as src . * @param red_mul R-channel multiply factor. * @param green_mul G-channel multiply factor. * @param blue_mul B-channel multiply factor. * * Multiplication factor is between .5 to 2.5. */ public static void colorChange(Mat src, Mat mask, Mat dst, float red_mul, float green_mul, float blue_mul) { colorChange_0(src.nativeObj, mask.nativeObj, dst.nativeObj, red_mul, green_mul, blue_mul); } /** * Given an original color image, two differently colored versions of this image can be mixed * seamlessly. * * @param src Input 8-bit 3-channel image. * @param mask Input 8-bit 1 or 3-channel image. * @param dst Output image with the same size and type as src . * @param red_mul R-channel multiply factor. * @param green_mul G-channel multiply factor. * * Multiplication factor is between .5 to 2.5. */ public static void colorChange(Mat src, Mat mask, Mat dst, float red_mul, float green_mul) { colorChange_1(src.nativeObj, mask.nativeObj, dst.nativeObj, red_mul, green_mul); } /** * Given an original color image, two differently colored versions of this image can be mixed * seamlessly. * * @param src Input 8-bit 3-channel image. * @param mask Input 8-bit 1 or 3-channel image. * @param dst Output image with the same size and type as src . * @param red_mul R-channel multiply factor. * * Multiplication factor is between .5 to 2.5. */ public static void colorChange(Mat src, Mat mask, Mat dst, float red_mul) { colorChange_2(src.nativeObj, mask.nativeObj, dst.nativeObj, red_mul); } /** * Given an original color image, two differently colored versions of this image can be mixed * seamlessly. * * @param src Input 8-bit 3-channel image. * @param mask Input 8-bit 1 or 3-channel image. * @param dst Output image with the same size and type as src . * * Multiplication factor is between .5 to 2.5. */ public static void colorChange(Mat src, Mat mask, Mat dst) { colorChange_3(src.nativeObj, mask.nativeObj, dst.nativeObj); } // // C++: void cv::illuminationChange(Mat src, Mat mask, Mat& dst, float alpha = 0.2f, float beta = 0.4f) // /** * Applying an appropriate non-linear transformation to the gradient field inside the selection and * then integrating back with a Poisson solver, modifies locally the apparent illumination of an image. * * @param src Input 8-bit 3-channel image. * @param mask Input 8-bit 1 or 3-channel image. * @param dst Output image with the same size and type as src. * @param alpha Value ranges between 0-2. * @param beta Value ranges between 0-2. * * This is useful to highlight under-exposed foreground objects or to reduce specular reflections. */ public static void illuminationChange(Mat src, Mat mask, Mat dst, float alpha, float beta) { illuminationChange_0(src.nativeObj, mask.nativeObj, dst.nativeObj, alpha, beta); } /** * Applying an appropriate non-linear transformation to the gradient field inside the selection and * then integrating back with a Poisson solver, modifies locally the apparent illumination of an image. * * @param src Input 8-bit 3-channel image. * @param mask Input 8-bit 1 or 3-channel image. * @param dst Output image with the same size and type as src. * @param alpha Value ranges between 0-2. * * This is useful to highlight under-exposed foreground objects or to reduce specular reflections. */ public static void illuminationChange(Mat src, Mat mask, Mat dst, float alpha) { illuminationChange_1(src.nativeObj, mask.nativeObj, dst.nativeObj, alpha); } /** * Applying an appropriate non-linear transformation to the gradient field inside the selection and * then integrating back with a Poisson solver, modifies locally the apparent illumination of an image. * * @param src Input 8-bit 3-channel image. * @param mask Input 8-bit 1 or 3-channel image. * @param dst Output image with the same size and type as src. * * This is useful to highlight under-exposed foreground objects or to reduce specular reflections. */ public static void illuminationChange(Mat src, Mat mask, Mat dst) { illuminationChange_2(src.nativeObj, mask.nativeObj, dst.nativeObj); } // // C++: void cv::textureFlattening(Mat src, Mat mask, Mat& dst, float low_threshold = 30, float high_threshold = 45, int kernel_size = 3) // /** * By retaining only the gradients at edge locations, before integrating with the Poisson solver, one * washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used. * * @param src Input 8-bit 3-channel image. * @param mask Input 8-bit 1 or 3-channel image. * @param dst Output image with the same size and type as src. * @param low_threshold %Range from 0 to 100. * @param high_threshold Value > 100. * @param kernel_size The size of the Sobel kernel to be used. * * Note: * The algorithm assumes that the color of the source image is close to that of the destination. This * assumption means that when the colors don't match, the source image color gets tinted toward the * color of the destination image. */ public static void textureFlattening(Mat src, Mat mask, Mat dst, float low_threshold, float high_threshold, int kernel_size) { textureFlattening_0(src.nativeObj, mask.nativeObj, dst.nativeObj, low_threshold, high_threshold, kernel_size); } /** * By retaining only the gradients at edge locations, before integrating with the Poisson solver, one * washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used. * * @param src Input 8-bit 3-channel image. * @param mask Input 8-bit 1 or 3-channel image. * @param dst Output image with the same size and type as src. * @param low_threshold %Range from 0 to 100. * @param high_threshold Value > 100. * * Note: * The algorithm assumes that the color of the source image is close to that of the destination. This * assumption means that when the colors don't match, the source image color gets tinted toward the * color of the destination image. */ public static void textureFlattening(Mat src, Mat mask, Mat dst, float low_threshold, float high_threshold) { textureFlattening_1(src.nativeObj, mask.nativeObj, dst.nativeObj, low_threshold, high_threshold); } /** * By retaining only the gradients at edge locations, before integrating with the Poisson solver, one * washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used. * * @param src Input 8-bit 3-channel image. * @param mask Input 8-bit 1 or 3-channel image. * @param dst Output image with the same size and type as src. * @param low_threshold %Range from 0 to 100. * * Note: * The algorithm assumes that the color of the source image is close to that of the destination. This * assumption means that when the colors don't match, the source image color gets tinted toward the * color of the destination image. */ public static void textureFlattening(Mat src, Mat mask, Mat dst, float low_threshold) { textureFlattening_2(src.nativeObj, mask.nativeObj, dst.nativeObj, low_threshold); } /** * By retaining only the gradients at edge locations, before integrating with the Poisson solver, one * washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used. * * @param src Input 8-bit 3-channel image. * @param mask Input 8-bit 1 or 3-channel image. * @param dst Output image with the same size and type as src. * * Note: * The algorithm assumes that the color of the source image is close to that of the destination. This * assumption means that when the colors don't match, the source image color gets tinted toward the * color of the destination image. */ public static void textureFlattening(Mat src, Mat mask, Mat dst) { textureFlattening_3(src.nativeObj, mask.nativeObj, dst.nativeObj); } // // C++: void cv::edgePreservingFilter(Mat src, Mat& dst, int flags = 1, float sigma_s = 60, float sigma_r = 0.4f) // /** * Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing * filters are used in many different applications CITE: EM11 . * * @param src Input 8-bit 3-channel image. * @param dst Output 8-bit 3-channel image. * @param flags Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER * @param sigma_s %Range between 0 to 200. * @param sigma_r %Range between 0 to 1. */ public static void edgePreservingFilter(Mat src, Mat dst, int flags, float sigma_s, float sigma_r) { edgePreservingFilter_0(src.nativeObj, dst.nativeObj, flags, sigma_s, sigma_r); } /** * Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing * filters are used in many different applications CITE: EM11 . * * @param src Input 8-bit 3-channel image. * @param dst Output 8-bit 3-channel image. * @param flags Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER * @param sigma_s %Range between 0 to 200. */ public static void edgePreservingFilter(Mat src, Mat dst, int flags, float sigma_s) { edgePreservingFilter_1(src.nativeObj, dst.nativeObj, flags, sigma_s); } /** * Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing * filters are used in many different applications CITE: EM11 . * * @param src Input 8-bit 3-channel image. * @param dst Output 8-bit 3-channel image. * @param flags Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER */ public static void edgePreservingFilter(Mat src, Mat dst, int flags) { edgePreservingFilter_2(src.nativeObj, dst.nativeObj, flags); } /** * Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing * filters are used in many different applications CITE: EM11 . * * @param src Input 8-bit 3-channel image. * @param dst Output 8-bit 3-channel image. */ public static void edgePreservingFilter(Mat src, Mat dst) { edgePreservingFilter_3(src.nativeObj, dst.nativeObj); } // // C++: void cv::detailEnhance(Mat src, Mat& dst, float sigma_s = 10, float sigma_r = 0.15f) // /** * This filter enhances the details of a particular image. * * @param src Input 8-bit 3-channel image. * @param dst Output image with the same size and type as src. * @param sigma_s %Range between 0 to 200. * @param sigma_r %Range between 0 to 1. */ public static void detailEnhance(Mat src, Mat dst, float sigma_s, float sigma_r) { detailEnhance_0(src.nativeObj, dst.nativeObj, sigma_s, sigma_r); } /** * This filter enhances the details of a particular image. * * @param src Input 8-bit 3-channel image. * @param dst Output image with the same size and type as src. * @param sigma_s %Range between 0 to 200. */ public static void detailEnhance(Mat src, Mat dst, float sigma_s) { detailEnhance_1(src.nativeObj, dst.nativeObj, sigma_s); } /** * This filter enhances the details of a particular image. * * @param src Input 8-bit 3-channel image. * @param dst Output image with the same size and type as src. */ public static void detailEnhance(Mat src, Mat dst) { detailEnhance_2(src.nativeObj, dst.nativeObj); } // // C++: void cv::pencilSketch(Mat src, Mat& dst1, Mat& dst2, float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f) // /** * Pencil-like non-photorealistic line drawing * * @param src Input 8-bit 3-channel image. * @param dst1 Output 8-bit 1-channel image. * @param dst2 Output image with the same size and type as src. * @param sigma_s %Range between 0 to 200. * @param sigma_r %Range between 0 to 1. * @param shade_factor %Range between 0 to 0.1. */ public static void pencilSketch(Mat src, Mat dst1, Mat dst2, float sigma_s, float sigma_r, float shade_factor) { pencilSketch_0(src.nativeObj, dst1.nativeObj, dst2.nativeObj, sigma_s, sigma_r, shade_factor); } /** * Pencil-like non-photorealistic line drawing * * @param src Input 8-bit 3-channel image. * @param dst1 Output 8-bit 1-channel image. * @param dst2 Output image with the same size and type as src. * @param sigma_s %Range between 0 to 200. * @param sigma_r %Range between 0 to 1. */ public static void pencilSketch(Mat src, Mat dst1, Mat dst2, float sigma_s, float sigma_r) { pencilSketch_1(src.nativeObj, dst1.nativeObj, dst2.nativeObj, sigma_s, sigma_r); } /** * Pencil-like non-photorealistic line drawing * * @param src Input 8-bit 3-channel image. * @param dst1 Output 8-bit 1-channel image. * @param dst2 Output image with the same size and type as src. * @param sigma_s %Range between 0 to 200. */ public static void pencilSketch(Mat src, Mat dst1, Mat dst2, float sigma_s) { pencilSketch_2(src.nativeObj, dst1.nativeObj, dst2.nativeObj, sigma_s); } /** * Pencil-like non-photorealistic line drawing * * @param src Input 8-bit 3-channel image. * @param dst1 Output 8-bit 1-channel image. * @param dst2 Output image with the same size and type as src. */ public static void pencilSketch(Mat src, Mat dst1, Mat dst2) { pencilSketch_3(src.nativeObj, dst1.nativeObj, dst2.nativeObj); } // // C++: void cv::stylization(Mat src, Mat& dst, float sigma_s = 60, float sigma_r = 0.45f) // /** * Stylization aims to produce digital imagery with a wide variety of effects not focused on * photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low * contrast while preserving, or enhancing, high-contrast features. * * @param src Input 8-bit 3-channel image. * @param dst Output image with the same size and type as src. * @param sigma_s %Range between 0 to 200. * @param sigma_r %Range between 0 to 1. */ public static void stylization(Mat src, Mat dst, float sigma_s, float sigma_r) { stylization_0(src.nativeObj, dst.nativeObj, sigma_s, sigma_r); } /** * Stylization aims to produce digital imagery with a wide variety of effects not focused on * photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low * contrast while preserving, or enhancing, high-contrast features. * * @param src Input 8-bit 3-channel image. * @param dst Output image with the same size and type as src. * @param sigma_s %Range between 0 to 200. */ public static void stylization(Mat src, Mat dst, float sigma_s) { stylization_1(src.nativeObj, dst.nativeObj, sigma_s); } /** * Stylization aims to produce digital imagery with a wide variety of effects not focused on * photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low * contrast while preserving, or enhancing, high-contrast features. * * @param src Input 8-bit 3-channel image. * @param dst Output image with the same size and type as src. */ public static void stylization(Mat src, Mat dst) { stylization_2(src.nativeObj, dst.nativeObj); } // C++: void cv::inpaint(Mat src, Mat inpaintMask, Mat& dst, double inpaintRadius, int flags) private static native void inpaint_0(long src_nativeObj, long inpaintMask_nativeObj, long dst_nativeObj, double inpaintRadius, int flags); // C++: void cv::fastNlMeansDenoising(Mat src, Mat& dst, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21) private static native void fastNlMeansDenoising_0(long src_nativeObj, long dst_nativeObj, float h, int templateWindowSize, int searchWindowSize); private static native void fastNlMeansDenoising_1(long src_nativeObj, long dst_nativeObj, float h, int templateWindowSize); private static native void fastNlMeansDenoising_2(long src_nativeObj, long dst_nativeObj, float h); private static native void fastNlMeansDenoising_3(long src_nativeObj, long dst_nativeObj); // C++: void cv::fastNlMeansDenoising(Mat src, Mat& dst, vector_float h, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2) private static native void fastNlMeansDenoising_4(long src_nativeObj, long dst_nativeObj, long h_mat_nativeObj, int templateWindowSize, int searchWindowSize, int normType); private static native void fastNlMeansDenoising_5(long src_nativeObj, long dst_nativeObj, long h_mat_nativeObj, int templateWindowSize, int searchWindowSize); private static native void fastNlMeansDenoising_6(long src_nativeObj, long dst_nativeObj, long h_mat_nativeObj, int templateWindowSize); private static native void fastNlMeansDenoising_7(long src_nativeObj, long dst_nativeObj, long h_mat_nativeObj); // C++: void cv::fastNlMeansDenoisingColored(Mat src, Mat& dst, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21) private static native void fastNlMeansDenoisingColored_0(long src_nativeObj, long dst_nativeObj, float h, float hColor, int templateWindowSize, int searchWindowSize); private static native void fastNlMeansDenoisingColored_1(long src_nativeObj, long dst_nativeObj, float h, float hColor, int templateWindowSize); private static native void fastNlMeansDenoisingColored_2(long src_nativeObj, long dst_nativeObj, float h, float hColor); private static native void fastNlMeansDenoisingColored_3(long src_nativeObj, long dst_nativeObj, float h); private static native void fastNlMeansDenoisingColored_4(long src_nativeObj, long dst_nativeObj); // C++: void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21) private static native void fastNlMeansDenoisingMulti_0(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize); private static native void fastNlMeansDenoisingMulti_1(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize); private static native void fastNlMeansDenoisingMulti_2(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h); private static native void fastNlMeansDenoisingMulti_3(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize); // C++: void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, vector_float h, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2) private static native void fastNlMeansDenoisingMulti_4(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, long h_mat_nativeObj, int templateWindowSize, int searchWindowSize, int normType); private static native void fastNlMeansDenoisingMulti_5(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, long h_mat_nativeObj, int templateWindowSize, int searchWindowSize); private static native void fastNlMeansDenoisingMulti_6(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, long h_mat_nativeObj, int templateWindowSize); private static native void fastNlMeansDenoisingMulti_7(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, long h_mat_nativeObj); // C++: void cv::fastNlMeansDenoisingColoredMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21) private static native void fastNlMeansDenoisingColoredMulti_0(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize); private static native void fastNlMeansDenoisingColoredMulti_1(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize); private static native void fastNlMeansDenoisingColoredMulti_2(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor); private static native void fastNlMeansDenoisingColoredMulti_3(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h); private static native void fastNlMeansDenoisingColoredMulti_4(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize); // C++: void cv::denoise_TVL1(vector_Mat observations, Mat result, double lambda = 1.0, int niters = 30) private static native void denoise_TVL1_0(long observations_mat_nativeObj, long result_nativeObj, double lambda, int niters); private static native void denoise_TVL1_1(long observations_mat_nativeObj, long result_nativeObj, double lambda); private static native void denoise_TVL1_2(long observations_mat_nativeObj, long result_nativeObj); // C++: Ptr_Tonemap cv::createTonemap(float gamma = 1.0f) private static native long createTonemap_0(float gamma); private static native long createTonemap_1(); // C++: Ptr_TonemapDrago cv::createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f) private static native long createTonemapDrago_0(float gamma, float saturation, float bias); private static native long createTonemapDrago_1(float gamma, float saturation); private static native long createTonemapDrago_2(float gamma); private static native long createTonemapDrago_3(); // C++: Ptr_TonemapReinhard cv::createTonemapReinhard(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f) private static native long createTonemapReinhard_0(float gamma, float intensity, float light_adapt, float color_adapt); private static native long createTonemapReinhard_1(float gamma, float intensity, float light_adapt); private static native long createTonemapReinhard_2(float gamma, float intensity); private static native long createTonemapReinhard_3(float gamma); private static native long createTonemapReinhard_4(); // C++: Ptr_TonemapMantiuk cv::createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f) private static native long createTonemapMantiuk_0(float gamma, float scale, float saturation); private static native long createTonemapMantiuk_1(float gamma, float scale); private static native long createTonemapMantiuk_2(float gamma); private static native long createTonemapMantiuk_3(); // C++: Ptr_AlignMTB cv::createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true) private static native long createAlignMTB_0(int max_bits, int exclude_range, boolean cut); private static native long createAlignMTB_1(int max_bits, int exclude_range); private static native long createAlignMTB_2(int max_bits); private static native long createAlignMTB_3(); // C++: Ptr_CalibrateDebevec cv::createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false) private static native long createCalibrateDebevec_0(int samples, float lambda, boolean random); private static native long createCalibrateDebevec_1(int samples, float lambda); private static native long createCalibrateDebevec_2(int samples); private static native long createCalibrateDebevec_3(); // C++: Ptr_CalibrateRobertson cv::createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f) private static native long createCalibrateRobertson_0(int max_iter, float threshold); private static native long createCalibrateRobertson_1(int max_iter); private static native long createCalibrateRobertson_2(); // C++: Ptr_MergeDebevec cv::createMergeDebevec() private static native long createMergeDebevec_0(); // C++: Ptr_MergeMertens cv::createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f) private static native long createMergeMertens_0(float contrast_weight, float saturation_weight, float exposure_weight); private static native long createMergeMertens_1(float contrast_weight, float saturation_weight); private static native long createMergeMertens_2(float contrast_weight); private static native long createMergeMertens_3(); // C++: Ptr_MergeRobertson cv::createMergeRobertson() private static native long createMergeRobertson_0(); // C++: void cv::decolor(Mat src, Mat& grayscale, Mat& color_boost) private static native void decolor_0(long src_nativeObj, long grayscale_nativeObj, long color_boost_nativeObj); // C++: void cv::seamlessClone(Mat src, Mat dst, Mat mask, Point p, Mat& blend, int flags) private static native void seamlessClone_0(long src_nativeObj, long dst_nativeObj, long mask_nativeObj, double p_x, double p_y, long blend_nativeObj, int flags); // C++: void cv::colorChange(Mat src, Mat mask, Mat& dst, float red_mul = 1.0f, float green_mul = 1.0f, float blue_mul = 1.0f) private static native void colorChange_0(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float red_mul, float green_mul, float blue_mul); private static native void colorChange_1(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float red_mul, float green_mul); private static native void colorChange_2(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float red_mul); private static native void colorChange_3(long src_nativeObj, long mask_nativeObj, long dst_nativeObj); // C++: void cv::illuminationChange(Mat src, Mat mask, Mat& dst, float alpha = 0.2f, float beta = 0.4f) private static native void illuminationChange_0(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float alpha, float beta); private static native void illuminationChange_1(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float alpha); private static native void illuminationChange_2(long src_nativeObj, long mask_nativeObj, long dst_nativeObj); // C++: void cv::textureFlattening(Mat src, Mat mask, Mat& dst, float low_threshold = 30, float high_threshold = 45, int kernel_size = 3) private static native void textureFlattening_0(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float low_threshold, float high_threshold, int kernel_size); private static native void textureFlattening_1(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float low_threshold, float high_threshold); private static native void textureFlattening_2(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float low_threshold); private static native void textureFlattening_3(long src_nativeObj, long mask_nativeObj, long dst_nativeObj); // C++: void cv::edgePreservingFilter(Mat src, Mat& dst, int flags = 1, float sigma_s = 60, float sigma_r = 0.4f) private static native void edgePreservingFilter_0(long src_nativeObj, long dst_nativeObj, int flags, float sigma_s, float sigma_r); private static native void edgePreservingFilter_1(long src_nativeObj, long dst_nativeObj, int flags, float sigma_s); private static native void edgePreservingFilter_2(long src_nativeObj, long dst_nativeObj, int flags); private static native void edgePreservingFilter_3(long src_nativeObj, long dst_nativeObj); // C++: void cv::detailEnhance(Mat src, Mat& dst, float sigma_s = 10, float sigma_r = 0.15f) private static native void detailEnhance_0(long src_nativeObj, long dst_nativeObj, float sigma_s, float sigma_r); private static native void detailEnhance_1(long src_nativeObj, long dst_nativeObj, float sigma_s); private static native void detailEnhance_2(long src_nativeObj, long dst_nativeObj); // C++: void cv::pencilSketch(Mat src, Mat& dst1, Mat& dst2, float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f) private static native void pencilSketch_0(long src_nativeObj, long dst1_nativeObj, long dst2_nativeObj, float sigma_s, float sigma_r, float shade_factor); private static native void pencilSketch_1(long src_nativeObj, long dst1_nativeObj, long dst2_nativeObj, float sigma_s, float sigma_r); private static native void pencilSketch_2(long src_nativeObj, long dst1_nativeObj, long dst2_nativeObj, float sigma_s); private static native void pencilSketch_3(long src_nativeObj, long dst1_nativeObj, long dst2_nativeObj); // C++: void cv::stylization(Mat src, Mat& dst, float sigma_s = 60, float sigma_r = 0.45f) private static native void stylization_0(long src_nativeObj, long dst_nativeObj, float sigma_s, float sigma_r); private static native void stylization_1(long src_nativeObj, long dst_nativeObj, float sigma_s); private static native void stylization_2(long src_nativeObj, long dst_nativeObj); }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy