Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.photo;
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.Point;
import org.opencv.photo.AlignMTB;
import org.opencv.photo.CalibrateDebevec;
import org.opencv.photo.CalibrateRobertson;
import org.opencv.photo.MergeDebevec;
import org.opencv.photo.MergeMertens;
import org.opencv.photo.MergeRobertson;
import org.opencv.photo.Tonemap;
import org.opencv.photo.TonemapDrago;
import org.opencv.photo.TonemapMantiuk;
import org.opencv.photo.TonemapReinhard;
import org.opencv.utils.Converters;
// C++: class Photo
public class Photo {
// C++: enum
public static final int
INPAINT_NS = 0,
INPAINT_TELEA = 1,
LDR_SIZE = 256,
NORMAL_CLONE = 1,
MIXED_CLONE = 2,
MONOCHROME_TRANSFER = 3,
RECURS_FILTER = 1,
NORMCONV_FILTER = 2;
//
// C++: void cv::inpaint(Mat src, Mat inpaintMask, Mat& dst, double inpaintRadius, int flags)
//
/**
* Restores the selected region in an image using the region neighborhood.
*
* @param src Input 8-bit, 16-bit unsigned or 32-bit float 1-channel or 8-bit 3-channel image.
* @param inpaintMask Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that
* needs to be inpainted.
* @param dst Output image with the same size and type as src .
* @param inpaintRadius Radius of a circular neighborhood of each point inpainted that is considered
* by the algorithm.
* @param flags Inpainting method that could be cv::INPAINT_NS or cv::INPAINT_TELEA
*
* The function reconstructs the selected image area from the pixel near the area boundary. The
* function may be used to remove dust and scratches from a scanned photo, or to remove undesirable
* objects from still images or video. See <http://en.wikipedia.org/wiki/Inpainting> for more details.
*
* Note:
*
*
* An example using the inpainting technique can be found at
* opencv_source_code/samples/cpp/inpaint.cpp
*
*
* (Python) An example using the inpainting technique can be found at
* opencv_source_code/samples/python/inpaint.py
*
*
*/
public static void inpaint(Mat src, Mat inpaintMask, Mat dst, double inpaintRadius, int flags) {
inpaint_0(src.nativeObj, inpaintMask.nativeObj, dst.nativeObj, inpaintRadius, flags);
}
//
// C++: void cv::fastNlMeansDenoising(Mat src, Mat& dst, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21)
//
/**
* Perform image denoising using Non-local Means Denoising algorithm
* <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
* optimizations. Noise expected to be a gaussian white noise
*
* @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
* @param dst Output image with the same size and type as src .
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength. Big h value perfectly removes noise but also
* removes image details, smaller h value preserves details but also preserves some noise
*
* This function expected to be applied to grayscale images. For colored images look at
* fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
* image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
* image to CIELAB colorspace and then separately denoise L and AB components with different h
* parameter.
*/
public static void fastNlMeansDenoising(Mat src, Mat dst, float h, int templateWindowSize, int searchWindowSize) {
fastNlMeansDenoising_0(src.nativeObj, dst.nativeObj, h, templateWindowSize, searchWindowSize);
}
/**
* Perform image denoising using Non-local Means Denoising algorithm
* <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
* optimizations. Noise expected to be a gaussian white noise
*
* @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
* @param dst Output image with the same size and type as src .
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength. Big h value perfectly removes noise but also
* removes image details, smaller h value preserves details but also preserves some noise
*
* This function expected to be applied to grayscale images. For colored images look at
* fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
* image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
* image to CIELAB colorspace and then separately denoise L and AB components with different h
* parameter.
*/
public static void fastNlMeansDenoising(Mat src, Mat dst, float h, int templateWindowSize) {
fastNlMeansDenoising_1(src.nativeObj, dst.nativeObj, h, templateWindowSize);
}
/**
* Perform image denoising using Non-local Means Denoising algorithm
* <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
* optimizations. Noise expected to be a gaussian white noise
*
* @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
* @param dst Output image with the same size and type as src .
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength. Big h value perfectly removes noise but also
* removes image details, smaller h value preserves details but also preserves some noise
*
* This function expected to be applied to grayscale images. For colored images look at
* fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
* image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
* image to CIELAB colorspace and then separately denoise L and AB components with different h
* parameter.
*/
public static void fastNlMeansDenoising(Mat src, Mat dst, float h) {
fastNlMeansDenoising_2(src.nativeObj, dst.nativeObj, h);
}
/**
* Perform image denoising using Non-local Means Denoising algorithm
* <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
* optimizations. Noise expected to be a gaussian white noise
*
* @param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
* @param dst Output image with the same size and type as src .
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* removes image details, smaller h value preserves details but also preserves some noise
*
* This function expected to be applied to grayscale images. For colored images look at
* fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
* image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
* image to CIELAB colorspace and then separately denoise L and AB components with different h
* parameter.
*/
public static void fastNlMeansDenoising(Mat src, Mat dst) {
fastNlMeansDenoising_3(src.nativeObj, dst.nativeObj);
}
//
// C++: void cv::fastNlMeansDenoising(Mat src, Mat& dst, vector_float h, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2)
//
/**
* Perform image denoising using Non-local Means Denoising algorithm
* <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
* optimizations. Noise expected to be a gaussian white noise
*
* @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
* 2-channel, 3-channel or 4-channel image.
* @param dst Output image with the same size and type as src .
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Array of parameters regulating filter strength, either one
* parameter applied to all channels or one per channel in dst. Big h value
* perfectly removes noise but also removes image details, smaller h
* value preserves details but also preserves some noise
* @param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
*
* This function expected to be applied to grayscale images. For colored images look at
* fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
* image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
* image to CIELAB colorspace and then separately denoise L and AB components with different h
* parameter.
*/
public static void fastNlMeansDenoising(Mat src, Mat dst, MatOfFloat h, int templateWindowSize, int searchWindowSize, int normType) {
Mat h_mat = h;
fastNlMeansDenoising_4(src.nativeObj, dst.nativeObj, h_mat.nativeObj, templateWindowSize, searchWindowSize, normType);
}
/**
* Perform image denoising using Non-local Means Denoising algorithm
* <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
* optimizations. Noise expected to be a gaussian white noise
*
* @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
* 2-channel, 3-channel or 4-channel image.
* @param dst Output image with the same size and type as src .
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Array of parameters regulating filter strength, either one
* parameter applied to all channels or one per channel in dst. Big h value
* perfectly removes noise but also removes image details, smaller h
* value preserves details but also preserves some noise
*
* This function expected to be applied to grayscale images. For colored images look at
* fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
* image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
* image to CIELAB colorspace and then separately denoise L and AB components with different h
* parameter.
*/
public static void fastNlMeansDenoising(Mat src, Mat dst, MatOfFloat h, int templateWindowSize, int searchWindowSize) {
Mat h_mat = h;
fastNlMeansDenoising_5(src.nativeObj, dst.nativeObj, h_mat.nativeObj, templateWindowSize, searchWindowSize);
}
/**
* Perform image denoising using Non-local Means Denoising algorithm
* <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
* optimizations. Noise expected to be a gaussian white noise
*
* @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
* 2-channel, 3-channel or 4-channel image.
* @param dst Output image with the same size and type as src .
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Array of parameters regulating filter strength, either one
* parameter applied to all channels or one per channel in dst. Big h value
* perfectly removes noise but also removes image details, smaller h
* value preserves details but also preserves some noise
*
* This function expected to be applied to grayscale images. For colored images look at
* fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
* image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
* image to CIELAB colorspace and then separately denoise L and AB components with different h
* parameter.
*/
public static void fastNlMeansDenoising(Mat src, Mat dst, MatOfFloat h, int templateWindowSize) {
Mat h_mat = h;
fastNlMeansDenoising_6(src.nativeObj, dst.nativeObj, h_mat.nativeObj, templateWindowSize);
}
/**
* Perform image denoising using Non-local Means Denoising algorithm
* <http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/> with several computational
* optimizations. Noise expected to be a gaussian white noise
*
* @param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
* 2-channel, 3-channel or 4-channel image.
* @param dst Output image with the same size and type as src .
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Array of parameters regulating filter strength, either one
* parameter applied to all channels or one per channel in dst. Big h value
* perfectly removes noise but also removes image details, smaller h
* value preserves details but also preserves some noise
*
* This function expected to be applied to grayscale images. For colored images look at
* fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
* image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
* image to CIELAB colorspace and then separately denoise L and AB components with different h
* parameter.
*/
public static void fastNlMeansDenoising(Mat src, Mat dst, MatOfFloat h) {
Mat h_mat = h;
fastNlMeansDenoising_7(src.nativeObj, dst.nativeObj, h_mat.nativeObj);
}
//
// C++: void cv::fastNlMeansDenoisingColored(Mat src, Mat& dst, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21)
//
/**
* Modification of fastNlMeansDenoising function for colored images
*
* @param src Input 8-bit 3-channel image.
* @param dst Output image with the same size and type as src .
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
* removes noise but also removes image details, smaller h value preserves details but also preserves
* some noise
* @param hColor The same as h but for color components. For most images value equals 10
* will be enough to remove colored noise and do not distort colors
*
* The function converts image to CIELAB colorspace and then separately denoise L and AB components
* with given h parameters using fastNlMeansDenoising function.
*/
public static void fastNlMeansDenoisingColored(Mat src, Mat dst, float h, float hColor, int templateWindowSize, int searchWindowSize) {
fastNlMeansDenoisingColored_0(src.nativeObj, dst.nativeObj, h, hColor, templateWindowSize, searchWindowSize);
}
/**
* Modification of fastNlMeansDenoising function for colored images
*
* @param src Input 8-bit 3-channel image.
* @param dst Output image with the same size and type as src .
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
* removes noise but also removes image details, smaller h value preserves details but also preserves
* some noise
* @param hColor The same as h but for color components. For most images value equals 10
* will be enough to remove colored noise and do not distort colors
*
* The function converts image to CIELAB colorspace and then separately denoise L and AB components
* with given h parameters using fastNlMeansDenoising function.
*/
public static void fastNlMeansDenoisingColored(Mat src, Mat dst, float h, float hColor, int templateWindowSize) {
fastNlMeansDenoisingColored_1(src.nativeObj, dst.nativeObj, h, hColor, templateWindowSize);
}
/**
* Modification of fastNlMeansDenoising function for colored images
*
* @param src Input 8-bit 3-channel image.
* @param dst Output image with the same size and type as src .
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
* removes noise but also removes image details, smaller h value preserves details but also preserves
* some noise
* @param hColor The same as h but for color components. For most images value equals 10
* will be enough to remove colored noise and do not distort colors
*
* The function converts image to CIELAB colorspace and then separately denoise L and AB components
* with given h parameters using fastNlMeansDenoising function.
*/
public static void fastNlMeansDenoisingColored(Mat src, Mat dst, float h, float hColor) {
fastNlMeansDenoisingColored_2(src.nativeObj, dst.nativeObj, h, hColor);
}
/**
* Modification of fastNlMeansDenoising function for colored images
*
* @param src Input 8-bit 3-channel image.
* @param dst Output image with the same size and type as src .
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
* removes noise but also removes image details, smaller h value preserves details but also preserves
* some noise
* will be enough to remove colored noise and do not distort colors
*
* The function converts image to CIELAB colorspace and then separately denoise L and AB components
* with given h parameters using fastNlMeansDenoising function.
*/
public static void fastNlMeansDenoisingColored(Mat src, Mat dst, float h) {
fastNlMeansDenoisingColored_3(src.nativeObj, dst.nativeObj, h);
}
/**
* Modification of fastNlMeansDenoising function for colored images
*
* @param src Input 8-bit 3-channel image.
* @param dst Output image with the same size and type as src .
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* removes noise but also removes image details, smaller h value preserves details but also preserves
* some noise
* will be enough to remove colored noise and do not distort colors
*
* The function converts image to CIELAB colorspace and then separately denoise L and AB components
* with given h parameters using fastNlMeansDenoising function.
*/
public static void fastNlMeansDenoisingColored(Mat src, Mat dst) {
fastNlMeansDenoisingColored_4(src.nativeObj, dst.nativeObj);
}
//
// C++: void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21)
//
/**
* Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
* captured in small period of time. For example video. This version of the function is for grayscale
* images or for manual manipulation with colorspaces. For more details see
* <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
*
* @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
* 4-channel images sequence. All images should have the same type and
* size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength. Bigger h value
* perfectly removes noise but also removes image details, smaller h
* value preserves details but also preserves some noise
*/
public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
fastNlMeansDenoisingMulti_0(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize, searchWindowSize);
}
/**
* Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
* captured in small period of time. For example video. This version of the function is for grayscale
* images or for manual manipulation with colorspaces. For more details see
* <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
*
* @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
* 4-channel images sequence. All images should have the same type and
* size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength. Bigger h value
* perfectly removes noise but also removes image details, smaller h
* value preserves details but also preserves some noise
*/
public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
fastNlMeansDenoisingMulti_1(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, templateWindowSize);
}
/**
* Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
* captured in small period of time. For example video. This version of the function is for grayscale
* images or for manual manipulation with colorspaces. For more details see
* <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
*
* @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
* 4-channel images sequence. All images should have the same type and
* size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength. Bigger h value
* perfectly removes noise but also removes image details, smaller h
* value preserves details but also preserves some noise
*/
public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
fastNlMeansDenoisingMulti_2(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h);
}
/**
* Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
* captured in small period of time. For example video. This version of the function is for grayscale
* images or for manual manipulation with colorspaces. For more details see
* <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
*
* @param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
* 4-channel images sequence. All images should have the same type and
* size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* perfectly removes noise but also removes image details, smaller h
* value preserves details but also preserves some noise
*/
public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
fastNlMeansDenoisingMulti_3(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize);
}
//
// C++: void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, vector_float h, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2)
//
/**
* Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
* captured in small period of time. For example video. This version of the function is for grayscale
* images or for manual manipulation with colorspaces. For more details see
* <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
*
* @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
* 2-channel, 3-channel or 4-channel images sequence. All images should
* have the same type and size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Array of parameters regulating filter strength, either one
* parameter applied to all channels or one per channel in dst. Big h value
* perfectly removes noise but also removes image details, smaller h
* value preserves details but also preserves some noise
* @param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1
*/
public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, MatOfFloat h, int templateWindowSize, int searchWindowSize, int normType) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
Mat h_mat = h;
fastNlMeansDenoisingMulti_4(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h_mat.nativeObj, templateWindowSize, searchWindowSize, normType);
}
/**
* Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
* captured in small period of time. For example video. This version of the function is for grayscale
* images or for manual manipulation with colorspaces. For more details see
* <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
*
* @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
* 2-channel, 3-channel or 4-channel images sequence. All images should
* have the same type and size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Array of parameters regulating filter strength, either one
* parameter applied to all channels or one per channel in dst. Big h value
* perfectly removes noise but also removes image details, smaller h
* value preserves details but also preserves some noise
*/
public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, MatOfFloat h, int templateWindowSize, int searchWindowSize) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
Mat h_mat = h;
fastNlMeansDenoisingMulti_5(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h_mat.nativeObj, templateWindowSize, searchWindowSize);
}
/**
* Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
* captured in small period of time. For example video. This version of the function is for grayscale
* images or for manual manipulation with colorspaces. For more details see
* <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
*
* @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
* 2-channel, 3-channel or 4-channel images sequence. All images should
* have the same type and size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Array of parameters regulating filter strength, either one
* parameter applied to all channels or one per channel in dst. Big h value
* perfectly removes noise but also removes image details, smaller h
* value preserves details but also preserves some noise
*/
public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, MatOfFloat h, int templateWindowSize) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
Mat h_mat = h;
fastNlMeansDenoisingMulti_6(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h_mat.nativeObj, templateWindowSize);
}
/**
* Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
* captured in small period of time. For example video. This version of the function is for grayscale
* images or for manual manipulation with colorspaces. For more details see
* <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6394>
*
* @param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
* 2-channel, 3-channel or 4-channel images sequence. All images should
* have the same type and size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Array of parameters regulating filter strength, either one
* parameter applied to all channels or one per channel in dst. Big h value
* perfectly removes noise but also removes image details, smaller h
* value preserves details but also preserves some noise
*/
public static void fastNlMeansDenoisingMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, MatOfFloat h) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
Mat h_mat = h;
fastNlMeansDenoisingMulti_7(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h_mat.nativeObj);
}
//
// C++: void cv::fastNlMeansDenoisingColoredMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21)
//
/**
* Modification of fastNlMeansDenoisingMulti function for colored images sequences
*
* @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
* size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* @param searchWindowSize Size in pixels of the window that is used to compute weighted average for
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
* removes noise but also removes image details, smaller h value preserves details but also preserves
* some noise.
* @param hColor The same as h but for color components.
*
* The function converts images to CIELAB colorspace and then separately denoise L and AB components
* with given h parameters using fastNlMeansDenoisingMulti function.
*/
public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
fastNlMeansDenoisingColoredMulti_0(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, hColor, templateWindowSize, searchWindowSize);
}
/**
* Modification of fastNlMeansDenoisingMulti function for colored images sequences
*
* @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
* size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* @param templateWindowSize Size in pixels of the template patch that is used to compute weights.
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
* removes noise but also removes image details, smaller h value preserves details but also preserves
* some noise.
* @param hColor The same as h but for color components.
*
* The function converts images to CIELAB colorspace and then separately denoise L and AB components
* with given h parameters using fastNlMeansDenoisingMulti function.
*/
public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
fastNlMeansDenoisingColoredMulti_1(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, hColor, templateWindowSize);
}
/**
* Modification of fastNlMeansDenoisingMulti function for colored images sequences
*
* @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
* size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
* removes noise but also removes image details, smaller h value preserves details but also preserves
* some noise.
* @param hColor The same as h but for color components.
*
* The function converts images to CIELAB colorspace and then separately denoise L and AB components
* with given h parameters using fastNlMeansDenoisingMulti function.
*/
public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
fastNlMeansDenoisingColoredMulti_2(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h, hColor);
}
/**
* Modification of fastNlMeansDenoisingMulti function for colored images sequences
*
* @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
* size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* @param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
* removes noise but also removes image details, smaller h value preserves details but also preserves
* some noise.
*
* The function converts images to CIELAB colorspace and then separately denoise L and AB components
* with given h parameters using fastNlMeansDenoisingMulti function.
*/
public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize, float h) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
fastNlMeansDenoisingColoredMulti_3(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize, h);
}
/**
* Modification of fastNlMeansDenoisingMulti function for colored images sequences
*
* @param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and
* size.
* @param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
* @param temporalWindowSize Number of surrounding images to use for target image denoising. Should
* be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
* imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
* srcImgs[imgToDenoiseIndex] image.
* @param dst Output image with the same size and type as srcImgs images.
* Should be odd. Recommended value 7 pixels
* given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
* denoising time. Recommended value 21 pixels
* removes noise but also removes image details, smaller h value preserves details but also preserves
* some noise.
*
* The function converts images to CIELAB colorspace and then separately denoise L and AB components
* with given h parameters using fastNlMeansDenoisingMulti function.
*/
public static void fastNlMeansDenoisingColoredMulti(List srcImgs, Mat dst, int imgToDenoiseIndex, int temporalWindowSize) {
Mat srcImgs_mat = Converters.vector_Mat_to_Mat(srcImgs);
fastNlMeansDenoisingColoredMulti_4(srcImgs_mat.nativeObj, dst.nativeObj, imgToDenoiseIndex, temporalWindowSize);
}
//
// C++: void cv::denoise_TVL1(vector_Mat observations, Mat result, double lambda = 1.0, int niters = 30)
//
/**
* Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
* finding a function to minimize some functional). As the image denoising, in particular, may be seen
* as the variational problem, primal-dual algorithm then can be used to perform denoising and this is
* exactly what is implemented.
*
* It should be noted, that this implementation was taken from the July 2013 blog entry
* CITE: MA13 , which also contained (slightly more general) ready-to-use source code on Python.
* Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end
* of July 2013 and finally it was slightly adapted by later authors.
*
* Although the thorough discussion and justification of the algorithm involved may be found in
* CITE: ChambolleEtAl, it might make sense to skim over it here, following CITE: MA13 . To begin
* with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
* pixels (it may be seen as set
* \(\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}\) for some
* \(m,\;n\in\mathbb{N}\)) into \(\{0,1,\dots,255\}\). We shall denote the noised images as \(f_i\) and with
* this view, given some image \(x\) of the same size, we may measure how bad it is by the formula
*
* \(\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\)
*
* \(\|\|\cdot\|\|\) here denotes \(L_2\)-norm and as you see, the first addend states that we want our
* image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
* we want our result to be close to the observations we've got. If we treat \(x\) as a function, this is
* exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
*
* @param observations This array should contain one or more noised versions of the image that is to
* be restored.
* @param result Here the denoised image will be stored. There is no need to do pre-allocation of
* storage space, as it will be automatically allocated, if necessary.
* @param lambda Corresponds to \(\lambda\) in the formulas above. As it is enlarged, the smooth
* (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
* speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
* removed.
* @param niters Number of iterations that the algorithm will run. Of course, as more iterations as
* better, but it is hard to quantitatively refine this statement, so just use the default and
* increase it if the results are poor.
*/
public static void denoise_TVL1(List observations, Mat result, double lambda, int niters) {
Mat observations_mat = Converters.vector_Mat_to_Mat(observations);
denoise_TVL1_0(observations_mat.nativeObj, result.nativeObj, lambda, niters);
}
/**
* Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
* finding a function to minimize some functional). As the image denoising, in particular, may be seen
* as the variational problem, primal-dual algorithm then can be used to perform denoising and this is
* exactly what is implemented.
*
* It should be noted, that this implementation was taken from the July 2013 blog entry
* CITE: MA13 , which also contained (slightly more general) ready-to-use source code on Python.
* Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end
* of July 2013 and finally it was slightly adapted by later authors.
*
* Although the thorough discussion and justification of the algorithm involved may be found in
* CITE: ChambolleEtAl, it might make sense to skim over it here, following CITE: MA13 . To begin
* with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
* pixels (it may be seen as set
* \(\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}\) for some
* \(m,\;n\in\mathbb{N}\)) into \(\{0,1,\dots,255\}\). We shall denote the noised images as \(f_i\) and with
* this view, given some image \(x\) of the same size, we may measure how bad it is by the formula
*
* \(\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\)
*
* \(\|\|\cdot\|\|\) here denotes \(L_2\)-norm and as you see, the first addend states that we want our
* image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
* we want our result to be close to the observations we've got. If we treat \(x\) as a function, this is
* exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
*
* @param observations This array should contain one or more noised versions of the image that is to
* be restored.
* @param result Here the denoised image will be stored. There is no need to do pre-allocation of
* storage space, as it will be automatically allocated, if necessary.
* @param lambda Corresponds to \(\lambda\) in the formulas above. As it is enlarged, the smooth
* (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
* speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
* removed.
* better, but it is hard to quantitatively refine this statement, so just use the default and
* increase it if the results are poor.
*/
public static void denoise_TVL1(List observations, Mat result, double lambda) {
Mat observations_mat = Converters.vector_Mat_to_Mat(observations);
denoise_TVL1_1(observations_mat.nativeObj, result.nativeObj, lambda);
}
/**
* Primal-dual algorithm is an algorithm for solving special types of variational problems (that is,
* finding a function to minimize some functional). As the image denoising, in particular, may be seen
* as the variational problem, primal-dual algorithm then can be used to perform denoising and this is
* exactly what is implemented.
*
* It should be noted, that this implementation was taken from the July 2013 blog entry
* CITE: MA13 , which also contained (slightly more general) ready-to-use source code on Python.
* Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end
* of July 2013 and finally it was slightly adapted by later authors.
*
* Although the thorough discussion and justification of the algorithm involved may be found in
* CITE: ChambolleEtAl, it might make sense to skim over it here, following CITE: MA13 . To begin
* with, we consider the 1-byte gray-level images as the functions from the rectangular domain of
* pixels (it may be seen as set
* \(\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}\) for some
* \(m,\;n\in\mathbb{N}\)) into \(\{0,1,\dots,255\}\). We shall denote the noised images as \(f_i\) and with
* this view, given some image \(x\) of the same size, we may measure how bad it is by the formula
*
* \(\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\)
*
* \(\|\|\cdot\|\|\) here denotes \(L_2\)-norm and as you see, the first addend states that we want our
* image to be smooth (ideally, having zero gradient, thus being constant) and the second states that
* we want our result to be close to the observations we've got. If we treat \(x\) as a function, this is
* exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play.
*
* @param observations This array should contain one or more noised versions of the image that is to
* be restored.
* @param result Here the denoised image will be stored. There is no need to do pre-allocation of
* storage space, as it will be automatically allocated, if necessary.
* (blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly
* speaking, as it becomes smaller, the result will be more blur but more sever outliers will be
* removed.
* better, but it is hard to quantitatively refine this statement, so just use the default and
* increase it if the results are poor.
*/
public static void denoise_TVL1(List observations, Mat result) {
Mat observations_mat = Converters.vector_Mat_to_Mat(observations);
denoise_TVL1_2(observations_mat.nativeObj, result.nativeObj);
}
//
// C++: Ptr_Tonemap cv::createTonemap(float gamma = 1.0f)
//
/**
* Creates simple linear mapper with gamma correction
*
* @param gamma positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma
* equal to 2.2f is suitable for most displays.
* Generally gamma > 1 brightens the image and gamma < 1 darkens it.
* @return automatically generated
*/
public static Tonemap createTonemap(float gamma) {
return Tonemap.__fromPtr__(createTonemap_0(gamma));
}
/**
* Creates simple linear mapper with gamma correction
*
* equal to 2.2f is suitable for most displays.
* Generally gamma > 1 brightens the image and gamma < 1 darkens it.
* @return automatically generated
*/
public static Tonemap createTonemap() {
return Tonemap.__fromPtr__(createTonemap_1());
}
//
// C++: Ptr_TonemapDrago cv::createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f)
//
/**
* Creates TonemapDrago object
*
* @param gamma gamma value for gamma correction. See createTonemap
* @param saturation positive saturation enhancement value. 1.0 preserves saturation, values greater
* than 1 increase saturation and values less than 1 decrease it.
* @param bias value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best
* results, default value is 0.85.
* @return automatically generated
*/
public static TonemapDrago createTonemapDrago(float gamma, float saturation, float bias) {
return TonemapDrago.__fromPtr__(createTonemapDrago_0(gamma, saturation, bias));
}
/**
* Creates TonemapDrago object
*
* @param gamma gamma value for gamma correction. See createTonemap
* @param saturation positive saturation enhancement value. 1.0 preserves saturation, values greater
* than 1 increase saturation and values less than 1 decrease it.
* results, default value is 0.85.
* @return automatically generated
*/
public static TonemapDrago createTonemapDrago(float gamma, float saturation) {
return TonemapDrago.__fromPtr__(createTonemapDrago_1(gamma, saturation));
}
/**
* Creates TonemapDrago object
*
* @param gamma gamma value for gamma correction. See createTonemap
* than 1 increase saturation and values less than 1 decrease it.
* results, default value is 0.85.
* @return automatically generated
*/
public static TonemapDrago createTonemapDrago(float gamma) {
return TonemapDrago.__fromPtr__(createTonemapDrago_2(gamma));
}
/**
* Creates TonemapDrago object
*
* than 1 increase saturation and values less than 1 decrease it.
* results, default value is 0.85.
* @return automatically generated
*/
public static TonemapDrago createTonemapDrago() {
return TonemapDrago.__fromPtr__(createTonemapDrago_3());
}
//
// C++: Ptr_TonemapReinhard cv::createTonemapReinhard(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f)
//
/**
* Creates TonemapReinhard object
*
* @param gamma gamma value for gamma correction. See createTonemap
* @param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results.
* @param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
* value, if 0 it's global, otherwise it's a weighted mean of this two cases.
* @param color_adapt chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
* if 0 adaptation level is the same for each channel.
* @return automatically generated
*/
public static TonemapReinhard createTonemapReinhard(float gamma, float intensity, float light_adapt, float color_adapt) {
return TonemapReinhard.__fromPtr__(createTonemapReinhard_0(gamma, intensity, light_adapt, color_adapt));
}
/**
* Creates TonemapReinhard object
*
* @param gamma gamma value for gamma correction. See createTonemap
* @param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results.
* @param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
* value, if 0 it's global, otherwise it's a weighted mean of this two cases.
* if 0 adaptation level is the same for each channel.
* @return automatically generated
*/
public static TonemapReinhard createTonemapReinhard(float gamma, float intensity, float light_adapt) {
return TonemapReinhard.__fromPtr__(createTonemapReinhard_1(gamma, intensity, light_adapt));
}
/**
* Creates TonemapReinhard object
*
* @param gamma gamma value for gamma correction. See createTonemap
* @param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results.
* value, if 0 it's global, otherwise it's a weighted mean of this two cases.
* if 0 adaptation level is the same for each channel.
* @return automatically generated
*/
public static TonemapReinhard createTonemapReinhard(float gamma, float intensity) {
return TonemapReinhard.__fromPtr__(createTonemapReinhard_2(gamma, intensity));
}
/**
* Creates TonemapReinhard object
*
* @param gamma gamma value for gamma correction. See createTonemap
* value, if 0 it's global, otherwise it's a weighted mean of this two cases.
* if 0 adaptation level is the same for each channel.
* @return automatically generated
*/
public static TonemapReinhard createTonemapReinhard(float gamma) {
return TonemapReinhard.__fromPtr__(createTonemapReinhard_3(gamma));
}
/**
* Creates TonemapReinhard object
*
* value, if 0 it's global, otherwise it's a weighted mean of this two cases.
* if 0 adaptation level is the same for each channel.
* @return automatically generated
*/
public static TonemapReinhard createTonemapReinhard() {
return TonemapReinhard.__fromPtr__(createTonemapReinhard_4());
}
//
// C++: Ptr_TonemapMantiuk cv::createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f)
//
/**
* Creates TonemapMantiuk object
*
* @param gamma gamma value for gamma correction. See createTonemap
* @param scale contrast scale factor. HVS response is multiplied by this parameter, thus compressing
* dynamic range. Values from 0.6 to 0.9 produce best results.
* @param saturation saturation enhancement value. See createTonemapDrago
* @return automatically generated
*/
public static TonemapMantiuk createTonemapMantiuk(float gamma, float scale, float saturation) {
return TonemapMantiuk.__fromPtr__(createTonemapMantiuk_0(gamma, scale, saturation));
}
/**
* Creates TonemapMantiuk object
*
* @param gamma gamma value for gamma correction. See createTonemap
* @param scale contrast scale factor. HVS response is multiplied by this parameter, thus compressing
* dynamic range. Values from 0.6 to 0.9 produce best results.
* @return automatically generated
*/
public static TonemapMantiuk createTonemapMantiuk(float gamma, float scale) {
return TonemapMantiuk.__fromPtr__(createTonemapMantiuk_1(gamma, scale));
}
/**
* Creates TonemapMantiuk object
*
* @param gamma gamma value for gamma correction. See createTonemap
* dynamic range. Values from 0.6 to 0.9 produce best results.
* @return automatically generated
*/
public static TonemapMantiuk createTonemapMantiuk(float gamma) {
return TonemapMantiuk.__fromPtr__(createTonemapMantiuk_2(gamma));
}
/**
* Creates TonemapMantiuk object
*
* dynamic range. Values from 0.6 to 0.9 produce best results.
* @return automatically generated
*/
public static TonemapMantiuk createTonemapMantiuk() {
return TonemapMantiuk.__fromPtr__(createTonemapMantiuk_3());
}
//
// C++: Ptr_AlignMTB cv::createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true)
//
/**
* Creates AlignMTB object
*
* @param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
* usually good enough (31 and 63 pixels shift respectively).
* @param exclude_range range for exclusion bitmap that is constructed to suppress noise around the
* median value.
* @param cut if true cuts images, otherwise fills the new regions with zeros.
* @return automatically generated
*/
public static AlignMTB createAlignMTB(int max_bits, int exclude_range, boolean cut) {
return AlignMTB.__fromPtr__(createAlignMTB_0(max_bits, exclude_range, cut));
}
/**
* Creates AlignMTB object
*
* @param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
* usually good enough (31 and 63 pixels shift respectively).
* @param exclude_range range for exclusion bitmap that is constructed to suppress noise around the
* median value.
* @return automatically generated
*/
public static AlignMTB createAlignMTB(int max_bits, int exclude_range) {
return AlignMTB.__fromPtr__(createAlignMTB_1(max_bits, exclude_range));
}
/**
* Creates AlignMTB object
*
* @param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
* usually good enough (31 and 63 pixels shift respectively).
* median value.
* @return automatically generated
*/
public static AlignMTB createAlignMTB(int max_bits) {
return AlignMTB.__fromPtr__(createAlignMTB_2(max_bits));
}
/**
* Creates AlignMTB object
*
* usually good enough (31 and 63 pixels shift respectively).
* median value.
* @return automatically generated
*/
public static AlignMTB createAlignMTB() {
return AlignMTB.__fromPtr__(createAlignMTB_3());
}
//
// C++: Ptr_CalibrateDebevec cv::createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false)
//
/**
* Creates CalibrateDebevec object
*
* @param samples number of pixel locations to use
* @param lambda smoothness term weight. Greater values produce smoother results, but can alter the
* response.
* @param random if true sample pixel locations are chosen at random, otherwise they form a
* rectangular grid.
* @return automatically generated
*/
public static CalibrateDebevec createCalibrateDebevec(int samples, float lambda, boolean random) {
return CalibrateDebevec.__fromPtr__(createCalibrateDebevec_0(samples, lambda, random));
}
/**
* Creates CalibrateDebevec object
*
* @param samples number of pixel locations to use
* @param lambda smoothness term weight. Greater values produce smoother results, but can alter the
* response.
* rectangular grid.
* @return automatically generated
*/
public static CalibrateDebevec createCalibrateDebevec(int samples, float lambda) {
return CalibrateDebevec.__fromPtr__(createCalibrateDebevec_1(samples, lambda));
}
/**
* Creates CalibrateDebevec object
*
* @param samples number of pixel locations to use
* response.
* rectangular grid.
* @return automatically generated
*/
public static CalibrateDebevec createCalibrateDebevec(int samples) {
return CalibrateDebevec.__fromPtr__(createCalibrateDebevec_2(samples));
}
/**
* Creates CalibrateDebevec object
*
* response.
* rectangular grid.
* @return automatically generated
*/
public static CalibrateDebevec createCalibrateDebevec() {
return CalibrateDebevec.__fromPtr__(createCalibrateDebevec_3());
}
//
// C++: Ptr_CalibrateRobertson cv::createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f)
//
/**
* Creates CalibrateRobertson object
*
* @param max_iter maximal number of Gauss-Seidel solver iterations.
* @param threshold target difference between results of two successive steps of the minimization.
* @return automatically generated
*/
public static CalibrateRobertson createCalibrateRobertson(int max_iter, float threshold) {
return CalibrateRobertson.__fromPtr__(createCalibrateRobertson_0(max_iter, threshold));
}
/**
* Creates CalibrateRobertson object
*
* @param max_iter maximal number of Gauss-Seidel solver iterations.
* @return automatically generated
*/
public static CalibrateRobertson createCalibrateRobertson(int max_iter) {
return CalibrateRobertson.__fromPtr__(createCalibrateRobertson_1(max_iter));
}
/**
* Creates CalibrateRobertson object
*
* @return automatically generated
*/
public static CalibrateRobertson createCalibrateRobertson() {
return CalibrateRobertson.__fromPtr__(createCalibrateRobertson_2());
}
//
// C++: Ptr_MergeDebevec cv::createMergeDebevec()
//
/**
* Creates MergeDebevec object
* @return automatically generated
*/
public static MergeDebevec createMergeDebevec() {
return MergeDebevec.__fromPtr__(createMergeDebevec_0());
}
//
// C++: Ptr_MergeMertens cv::createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f)
//
/**
* Creates MergeMertens object
*
* @param contrast_weight contrast measure weight. See MergeMertens.
* @param saturation_weight saturation measure weight
* @param exposure_weight well-exposedness measure weight
* @return automatically generated
*/
public static MergeMertens createMergeMertens(float contrast_weight, float saturation_weight, float exposure_weight) {
return MergeMertens.__fromPtr__(createMergeMertens_0(contrast_weight, saturation_weight, exposure_weight));
}
/**
* Creates MergeMertens object
*
* @param contrast_weight contrast measure weight. See MergeMertens.
* @param saturation_weight saturation measure weight
* @return automatically generated
*/
public static MergeMertens createMergeMertens(float contrast_weight, float saturation_weight) {
return MergeMertens.__fromPtr__(createMergeMertens_1(contrast_weight, saturation_weight));
}
/**
* Creates MergeMertens object
*
* @param contrast_weight contrast measure weight. See MergeMertens.
* @return automatically generated
*/
public static MergeMertens createMergeMertens(float contrast_weight) {
return MergeMertens.__fromPtr__(createMergeMertens_2(contrast_weight));
}
/**
* Creates MergeMertens object
*
* @return automatically generated
*/
public static MergeMertens createMergeMertens() {
return MergeMertens.__fromPtr__(createMergeMertens_3());
}
//
// C++: Ptr_MergeRobertson cv::createMergeRobertson()
//
/**
* Creates MergeRobertson object
* @return automatically generated
*/
public static MergeRobertson createMergeRobertson() {
return MergeRobertson.__fromPtr__(createMergeRobertson_0());
}
//
// C++: void cv::decolor(Mat src, Mat& grayscale, Mat& color_boost)
//
/**
* Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized
* black-and-white photograph rendering, and in many single channel image processing applications
* CITE: CL12 .
*
* @param src Input 8-bit 3-channel image.
* @param grayscale Output 8-bit 1-channel image.
* @param color_boost Output 8-bit 3-channel image.
*
* This function is to be applied on color images.
*/
public static void decolor(Mat src, Mat grayscale, Mat color_boost) {
decolor_0(src.nativeObj, grayscale.nativeObj, color_boost.nativeObj);
}
//
// C++: void cv::seamlessClone(Mat src, Mat dst, Mat mask, Point p, Mat& blend, int flags)
//
/**
* Image editing tasks concern either global changes (color/intensity corrections, filters,
* deformations) or local changes concerned to a selection. Here we are interested in achieving local
* changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless
* manner. The extent of the changes ranges from slight distortions to complete replacement by novel
* content CITE: PM03 .
*
* @param src Input 8-bit 3-channel image.
* @param dst Input 8-bit 3-channel image.
* @param mask Input 8-bit 1 or 3-channel image.
* @param p Point in dst image where object is placed.
* @param blend Output image with the same size and type as dst.
* @param flags Cloning method that could be cv::NORMAL_CLONE, cv::MIXED_CLONE or cv::MONOCHROME_TRANSFER
*/
public static void seamlessClone(Mat src, Mat dst, Mat mask, Point p, Mat blend, int flags) {
seamlessClone_0(src.nativeObj, dst.nativeObj, mask.nativeObj, p.x, p.y, blend.nativeObj, flags);
}
//
// C++: void cv::colorChange(Mat src, Mat mask, Mat& dst, float red_mul = 1.0f, float green_mul = 1.0f, float blue_mul = 1.0f)
//
/**
* Given an original color image, two differently colored versions of this image can be mixed
* seamlessly.
*
* @param src Input 8-bit 3-channel image.
* @param mask Input 8-bit 1 or 3-channel image.
* @param dst Output image with the same size and type as src .
* @param red_mul R-channel multiply factor.
* @param green_mul G-channel multiply factor.
* @param blue_mul B-channel multiply factor.
*
* Multiplication factor is between .5 to 2.5.
*/
public static void colorChange(Mat src, Mat mask, Mat dst, float red_mul, float green_mul, float blue_mul) {
colorChange_0(src.nativeObj, mask.nativeObj, dst.nativeObj, red_mul, green_mul, blue_mul);
}
/**
* Given an original color image, two differently colored versions of this image can be mixed
* seamlessly.
*
* @param src Input 8-bit 3-channel image.
* @param mask Input 8-bit 1 or 3-channel image.
* @param dst Output image with the same size and type as src .
* @param red_mul R-channel multiply factor.
* @param green_mul G-channel multiply factor.
*
* Multiplication factor is between .5 to 2.5.
*/
public static void colorChange(Mat src, Mat mask, Mat dst, float red_mul, float green_mul) {
colorChange_1(src.nativeObj, mask.nativeObj, dst.nativeObj, red_mul, green_mul);
}
/**
* Given an original color image, two differently colored versions of this image can be mixed
* seamlessly.
*
* @param src Input 8-bit 3-channel image.
* @param mask Input 8-bit 1 or 3-channel image.
* @param dst Output image with the same size and type as src .
* @param red_mul R-channel multiply factor.
*
* Multiplication factor is between .5 to 2.5.
*/
public static void colorChange(Mat src, Mat mask, Mat dst, float red_mul) {
colorChange_2(src.nativeObj, mask.nativeObj, dst.nativeObj, red_mul);
}
/**
* Given an original color image, two differently colored versions of this image can be mixed
* seamlessly.
*
* @param src Input 8-bit 3-channel image.
* @param mask Input 8-bit 1 or 3-channel image.
* @param dst Output image with the same size and type as src .
*
* Multiplication factor is between .5 to 2.5.
*/
public static void colorChange(Mat src, Mat mask, Mat dst) {
colorChange_3(src.nativeObj, mask.nativeObj, dst.nativeObj);
}
//
// C++: void cv::illuminationChange(Mat src, Mat mask, Mat& dst, float alpha = 0.2f, float beta = 0.4f)
//
/**
* Applying an appropriate non-linear transformation to the gradient field inside the selection and
* then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
*
* @param src Input 8-bit 3-channel image.
* @param mask Input 8-bit 1 or 3-channel image.
* @param dst Output image with the same size and type as src.
* @param alpha Value ranges between 0-2.
* @param beta Value ranges between 0-2.
*
* This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
*/
public static void illuminationChange(Mat src, Mat mask, Mat dst, float alpha, float beta) {
illuminationChange_0(src.nativeObj, mask.nativeObj, dst.nativeObj, alpha, beta);
}
/**
* Applying an appropriate non-linear transformation to the gradient field inside the selection and
* then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
*
* @param src Input 8-bit 3-channel image.
* @param mask Input 8-bit 1 or 3-channel image.
* @param dst Output image with the same size and type as src.
* @param alpha Value ranges between 0-2.
*
* This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
*/
public static void illuminationChange(Mat src, Mat mask, Mat dst, float alpha) {
illuminationChange_1(src.nativeObj, mask.nativeObj, dst.nativeObj, alpha);
}
/**
* Applying an appropriate non-linear transformation to the gradient field inside the selection and
* then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
*
* @param src Input 8-bit 3-channel image.
* @param mask Input 8-bit 1 or 3-channel image.
* @param dst Output image with the same size and type as src.
*
* This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
*/
public static void illuminationChange(Mat src, Mat mask, Mat dst) {
illuminationChange_2(src.nativeObj, mask.nativeObj, dst.nativeObj);
}
//
// C++: void cv::textureFlattening(Mat src, Mat mask, Mat& dst, float low_threshold = 30, float high_threshold = 45, int kernel_size = 3)
//
/**
* By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
* washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
*
* @param src Input 8-bit 3-channel image.
* @param mask Input 8-bit 1 or 3-channel image.
* @param dst Output image with the same size and type as src.
* @param low_threshold %Range from 0 to 100.
* @param high_threshold Value > 100.
* @param kernel_size The size of the Sobel kernel to be used.
*
* Note:
* The algorithm assumes that the color of the source image is close to that of the destination. This
* assumption means that when the colors don't match, the source image color gets tinted toward the
* color of the destination image.
*/
public static void textureFlattening(Mat src, Mat mask, Mat dst, float low_threshold, float high_threshold, int kernel_size) {
textureFlattening_0(src.nativeObj, mask.nativeObj, dst.nativeObj, low_threshold, high_threshold, kernel_size);
}
/**
* By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
* washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
*
* @param src Input 8-bit 3-channel image.
* @param mask Input 8-bit 1 or 3-channel image.
* @param dst Output image with the same size and type as src.
* @param low_threshold %Range from 0 to 100.
* @param high_threshold Value > 100.
*
* Note:
* The algorithm assumes that the color of the source image is close to that of the destination. This
* assumption means that when the colors don't match, the source image color gets tinted toward the
* color of the destination image.
*/
public static void textureFlattening(Mat src, Mat mask, Mat dst, float low_threshold, float high_threshold) {
textureFlattening_1(src.nativeObj, mask.nativeObj, dst.nativeObj, low_threshold, high_threshold);
}
/**
* By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
* washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
*
* @param src Input 8-bit 3-channel image.
* @param mask Input 8-bit 1 or 3-channel image.
* @param dst Output image with the same size and type as src.
* @param low_threshold %Range from 0 to 100.
*
* Note:
* The algorithm assumes that the color of the source image is close to that of the destination. This
* assumption means that when the colors don't match, the source image color gets tinted toward the
* color of the destination image.
*/
public static void textureFlattening(Mat src, Mat mask, Mat dst, float low_threshold) {
textureFlattening_2(src.nativeObj, mask.nativeObj, dst.nativeObj, low_threshold);
}
/**
* By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
* washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
*
* @param src Input 8-bit 3-channel image.
* @param mask Input 8-bit 1 or 3-channel image.
* @param dst Output image with the same size and type as src.
*
* Note:
* The algorithm assumes that the color of the source image is close to that of the destination. This
* assumption means that when the colors don't match, the source image color gets tinted toward the
* color of the destination image.
*/
public static void textureFlattening(Mat src, Mat mask, Mat dst) {
textureFlattening_3(src.nativeObj, mask.nativeObj, dst.nativeObj);
}
//
// C++: void cv::edgePreservingFilter(Mat src, Mat& dst, int flags = 1, float sigma_s = 60, float sigma_r = 0.4f)
//
/**
* Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
* filters are used in many different applications CITE: EM11 .
*
* @param src Input 8-bit 3-channel image.
* @param dst Output 8-bit 3-channel image.
* @param flags Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER
* @param sigma_s %Range between 0 to 200.
* @param sigma_r %Range between 0 to 1.
*/
public static void edgePreservingFilter(Mat src, Mat dst, int flags, float sigma_s, float sigma_r) {
edgePreservingFilter_0(src.nativeObj, dst.nativeObj, flags, sigma_s, sigma_r);
}
/**
* Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
* filters are used in many different applications CITE: EM11 .
*
* @param src Input 8-bit 3-channel image.
* @param dst Output 8-bit 3-channel image.
* @param flags Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER
* @param sigma_s %Range between 0 to 200.
*/
public static void edgePreservingFilter(Mat src, Mat dst, int flags, float sigma_s) {
edgePreservingFilter_1(src.nativeObj, dst.nativeObj, flags, sigma_s);
}
/**
* Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
* filters are used in many different applications CITE: EM11 .
*
* @param src Input 8-bit 3-channel image.
* @param dst Output 8-bit 3-channel image.
* @param flags Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER
*/
public static void edgePreservingFilter(Mat src, Mat dst, int flags) {
edgePreservingFilter_2(src.nativeObj, dst.nativeObj, flags);
}
/**
* Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
* filters are used in many different applications CITE: EM11 .
*
* @param src Input 8-bit 3-channel image.
* @param dst Output 8-bit 3-channel image.
*/
public static void edgePreservingFilter(Mat src, Mat dst) {
edgePreservingFilter_3(src.nativeObj, dst.nativeObj);
}
//
// C++: void cv::detailEnhance(Mat src, Mat& dst, float sigma_s = 10, float sigma_r = 0.15f)
//
/**
* This filter enhances the details of a particular image.
*
* @param src Input 8-bit 3-channel image.
* @param dst Output image with the same size and type as src.
* @param sigma_s %Range between 0 to 200.
* @param sigma_r %Range between 0 to 1.
*/
public static void detailEnhance(Mat src, Mat dst, float sigma_s, float sigma_r) {
detailEnhance_0(src.nativeObj, dst.nativeObj, sigma_s, sigma_r);
}
/**
* This filter enhances the details of a particular image.
*
* @param src Input 8-bit 3-channel image.
* @param dst Output image with the same size and type as src.
* @param sigma_s %Range between 0 to 200.
*/
public static void detailEnhance(Mat src, Mat dst, float sigma_s) {
detailEnhance_1(src.nativeObj, dst.nativeObj, sigma_s);
}
/**
* This filter enhances the details of a particular image.
*
* @param src Input 8-bit 3-channel image.
* @param dst Output image with the same size and type as src.
*/
public static void detailEnhance(Mat src, Mat dst) {
detailEnhance_2(src.nativeObj, dst.nativeObj);
}
//
// C++: void cv::pencilSketch(Mat src, Mat& dst1, Mat& dst2, float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f)
//
/**
* Pencil-like non-photorealistic line drawing
*
* @param src Input 8-bit 3-channel image.
* @param dst1 Output 8-bit 1-channel image.
* @param dst2 Output image with the same size and type as src.
* @param sigma_s %Range between 0 to 200.
* @param sigma_r %Range between 0 to 1.
* @param shade_factor %Range between 0 to 0.1.
*/
public static void pencilSketch(Mat src, Mat dst1, Mat dst2, float sigma_s, float sigma_r, float shade_factor) {
pencilSketch_0(src.nativeObj, dst1.nativeObj, dst2.nativeObj, sigma_s, sigma_r, shade_factor);
}
/**
* Pencil-like non-photorealistic line drawing
*
* @param src Input 8-bit 3-channel image.
* @param dst1 Output 8-bit 1-channel image.
* @param dst2 Output image with the same size and type as src.
* @param sigma_s %Range between 0 to 200.
* @param sigma_r %Range between 0 to 1.
*/
public static void pencilSketch(Mat src, Mat dst1, Mat dst2, float sigma_s, float sigma_r) {
pencilSketch_1(src.nativeObj, dst1.nativeObj, dst2.nativeObj, sigma_s, sigma_r);
}
/**
* Pencil-like non-photorealistic line drawing
*
* @param src Input 8-bit 3-channel image.
* @param dst1 Output 8-bit 1-channel image.
* @param dst2 Output image with the same size and type as src.
* @param sigma_s %Range between 0 to 200.
*/
public static void pencilSketch(Mat src, Mat dst1, Mat dst2, float sigma_s) {
pencilSketch_2(src.nativeObj, dst1.nativeObj, dst2.nativeObj, sigma_s);
}
/**
* Pencil-like non-photorealistic line drawing
*
* @param src Input 8-bit 3-channel image.
* @param dst1 Output 8-bit 1-channel image.
* @param dst2 Output image with the same size and type as src.
*/
public static void pencilSketch(Mat src, Mat dst1, Mat dst2) {
pencilSketch_3(src.nativeObj, dst1.nativeObj, dst2.nativeObj);
}
//
// C++: void cv::stylization(Mat src, Mat& dst, float sigma_s = 60, float sigma_r = 0.45f)
//
/**
* Stylization aims to produce digital imagery with a wide variety of effects not focused on
* photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
* contrast while preserving, or enhancing, high-contrast features.
*
* @param src Input 8-bit 3-channel image.
* @param dst Output image with the same size and type as src.
* @param sigma_s %Range between 0 to 200.
* @param sigma_r %Range between 0 to 1.
*/
public static void stylization(Mat src, Mat dst, float sigma_s, float sigma_r) {
stylization_0(src.nativeObj, dst.nativeObj, sigma_s, sigma_r);
}
/**
* Stylization aims to produce digital imagery with a wide variety of effects not focused on
* photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
* contrast while preserving, or enhancing, high-contrast features.
*
* @param src Input 8-bit 3-channel image.
* @param dst Output image with the same size and type as src.
* @param sigma_s %Range between 0 to 200.
*/
public static void stylization(Mat src, Mat dst, float sigma_s) {
stylization_1(src.nativeObj, dst.nativeObj, sigma_s);
}
/**
* Stylization aims to produce digital imagery with a wide variety of effects not focused on
* photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
* contrast while preserving, or enhancing, high-contrast features.
*
* @param src Input 8-bit 3-channel image.
* @param dst Output image with the same size and type as src.
*/
public static void stylization(Mat src, Mat dst) {
stylization_2(src.nativeObj, dst.nativeObj);
}
// C++: void cv::inpaint(Mat src, Mat inpaintMask, Mat& dst, double inpaintRadius, int flags)
private static native void inpaint_0(long src_nativeObj, long inpaintMask_nativeObj, long dst_nativeObj, double inpaintRadius, int flags);
// C++: void cv::fastNlMeansDenoising(Mat src, Mat& dst, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21)
private static native void fastNlMeansDenoising_0(long src_nativeObj, long dst_nativeObj, float h, int templateWindowSize, int searchWindowSize);
private static native void fastNlMeansDenoising_1(long src_nativeObj, long dst_nativeObj, float h, int templateWindowSize);
private static native void fastNlMeansDenoising_2(long src_nativeObj, long dst_nativeObj, float h);
private static native void fastNlMeansDenoising_3(long src_nativeObj, long dst_nativeObj);
// C++: void cv::fastNlMeansDenoising(Mat src, Mat& dst, vector_float h, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2)
private static native void fastNlMeansDenoising_4(long src_nativeObj, long dst_nativeObj, long h_mat_nativeObj, int templateWindowSize, int searchWindowSize, int normType);
private static native void fastNlMeansDenoising_5(long src_nativeObj, long dst_nativeObj, long h_mat_nativeObj, int templateWindowSize, int searchWindowSize);
private static native void fastNlMeansDenoising_6(long src_nativeObj, long dst_nativeObj, long h_mat_nativeObj, int templateWindowSize);
private static native void fastNlMeansDenoising_7(long src_nativeObj, long dst_nativeObj, long h_mat_nativeObj);
// C++: void cv::fastNlMeansDenoisingColored(Mat src, Mat& dst, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21)
private static native void fastNlMeansDenoisingColored_0(long src_nativeObj, long dst_nativeObj, float h, float hColor, int templateWindowSize, int searchWindowSize);
private static native void fastNlMeansDenoisingColored_1(long src_nativeObj, long dst_nativeObj, float h, float hColor, int templateWindowSize);
private static native void fastNlMeansDenoisingColored_2(long src_nativeObj, long dst_nativeObj, float h, float hColor);
private static native void fastNlMeansDenoisingColored_3(long src_nativeObj, long dst_nativeObj, float h);
private static native void fastNlMeansDenoisingColored_4(long src_nativeObj, long dst_nativeObj);
// C++: void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, int templateWindowSize = 7, int searchWindowSize = 21)
private static native void fastNlMeansDenoisingMulti_0(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize, int searchWindowSize);
private static native void fastNlMeansDenoisingMulti_1(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, int templateWindowSize);
private static native void fastNlMeansDenoisingMulti_2(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h);
private static native void fastNlMeansDenoisingMulti_3(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize);
// C++: void cv::fastNlMeansDenoisingMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, vector_float h, int templateWindowSize = 7, int searchWindowSize = 21, int normType = NORM_L2)
private static native void fastNlMeansDenoisingMulti_4(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, long h_mat_nativeObj, int templateWindowSize, int searchWindowSize, int normType);
private static native void fastNlMeansDenoisingMulti_5(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, long h_mat_nativeObj, int templateWindowSize, int searchWindowSize);
private static native void fastNlMeansDenoisingMulti_6(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, long h_mat_nativeObj, int templateWindowSize);
private static native void fastNlMeansDenoisingMulti_7(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, long h_mat_nativeObj);
// C++: void cv::fastNlMeansDenoisingColoredMulti(vector_Mat srcImgs, Mat& dst, int imgToDenoiseIndex, int temporalWindowSize, float h = 3, float hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21)
private static native void fastNlMeansDenoisingColoredMulti_0(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize, int searchWindowSize);
private static native void fastNlMeansDenoisingColoredMulti_1(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor, int templateWindowSize);
private static native void fastNlMeansDenoisingColoredMulti_2(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h, float hColor);
private static native void fastNlMeansDenoisingColoredMulti_3(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize, float h);
private static native void fastNlMeansDenoisingColoredMulti_4(long srcImgs_mat_nativeObj, long dst_nativeObj, int imgToDenoiseIndex, int temporalWindowSize);
// C++: void cv::denoise_TVL1(vector_Mat observations, Mat result, double lambda = 1.0, int niters = 30)
private static native void denoise_TVL1_0(long observations_mat_nativeObj, long result_nativeObj, double lambda, int niters);
private static native void denoise_TVL1_1(long observations_mat_nativeObj, long result_nativeObj, double lambda);
private static native void denoise_TVL1_2(long observations_mat_nativeObj, long result_nativeObj);
// C++: Ptr_Tonemap cv::createTonemap(float gamma = 1.0f)
private static native long createTonemap_0(float gamma);
private static native long createTonemap_1();
// C++: Ptr_TonemapDrago cv::createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f)
private static native long createTonemapDrago_0(float gamma, float saturation, float bias);
private static native long createTonemapDrago_1(float gamma, float saturation);
private static native long createTonemapDrago_2(float gamma);
private static native long createTonemapDrago_3();
// C++: Ptr_TonemapReinhard cv::createTonemapReinhard(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f)
private static native long createTonemapReinhard_0(float gamma, float intensity, float light_adapt, float color_adapt);
private static native long createTonemapReinhard_1(float gamma, float intensity, float light_adapt);
private static native long createTonemapReinhard_2(float gamma, float intensity);
private static native long createTonemapReinhard_3(float gamma);
private static native long createTonemapReinhard_4();
// C++: Ptr_TonemapMantiuk cv::createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f)
private static native long createTonemapMantiuk_0(float gamma, float scale, float saturation);
private static native long createTonemapMantiuk_1(float gamma, float scale);
private static native long createTonemapMantiuk_2(float gamma);
private static native long createTonemapMantiuk_3();
// C++: Ptr_AlignMTB cv::createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true)
private static native long createAlignMTB_0(int max_bits, int exclude_range, boolean cut);
private static native long createAlignMTB_1(int max_bits, int exclude_range);
private static native long createAlignMTB_2(int max_bits);
private static native long createAlignMTB_3();
// C++: Ptr_CalibrateDebevec cv::createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false)
private static native long createCalibrateDebevec_0(int samples, float lambda, boolean random);
private static native long createCalibrateDebevec_1(int samples, float lambda);
private static native long createCalibrateDebevec_2(int samples);
private static native long createCalibrateDebevec_3();
// C++: Ptr_CalibrateRobertson cv::createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f)
private static native long createCalibrateRobertson_0(int max_iter, float threshold);
private static native long createCalibrateRobertson_1(int max_iter);
private static native long createCalibrateRobertson_2();
// C++: Ptr_MergeDebevec cv::createMergeDebevec()
private static native long createMergeDebevec_0();
// C++: Ptr_MergeMertens cv::createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f)
private static native long createMergeMertens_0(float contrast_weight, float saturation_weight, float exposure_weight);
private static native long createMergeMertens_1(float contrast_weight, float saturation_weight);
private static native long createMergeMertens_2(float contrast_weight);
private static native long createMergeMertens_3();
// C++: Ptr_MergeRobertson cv::createMergeRobertson()
private static native long createMergeRobertson_0();
// C++: void cv::decolor(Mat src, Mat& grayscale, Mat& color_boost)
private static native void decolor_0(long src_nativeObj, long grayscale_nativeObj, long color_boost_nativeObj);
// C++: void cv::seamlessClone(Mat src, Mat dst, Mat mask, Point p, Mat& blend, int flags)
private static native void seamlessClone_0(long src_nativeObj, long dst_nativeObj, long mask_nativeObj, double p_x, double p_y, long blend_nativeObj, int flags);
// C++: void cv::colorChange(Mat src, Mat mask, Mat& dst, float red_mul = 1.0f, float green_mul = 1.0f, float blue_mul = 1.0f)
private static native void colorChange_0(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float red_mul, float green_mul, float blue_mul);
private static native void colorChange_1(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float red_mul, float green_mul);
private static native void colorChange_2(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float red_mul);
private static native void colorChange_3(long src_nativeObj, long mask_nativeObj, long dst_nativeObj);
// C++: void cv::illuminationChange(Mat src, Mat mask, Mat& dst, float alpha = 0.2f, float beta = 0.4f)
private static native void illuminationChange_0(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float alpha, float beta);
private static native void illuminationChange_1(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float alpha);
private static native void illuminationChange_2(long src_nativeObj, long mask_nativeObj, long dst_nativeObj);
// C++: void cv::textureFlattening(Mat src, Mat mask, Mat& dst, float low_threshold = 30, float high_threshold = 45, int kernel_size = 3)
private static native void textureFlattening_0(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float low_threshold, float high_threshold, int kernel_size);
private static native void textureFlattening_1(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float low_threshold, float high_threshold);
private static native void textureFlattening_2(long src_nativeObj, long mask_nativeObj, long dst_nativeObj, float low_threshold);
private static native void textureFlattening_3(long src_nativeObj, long mask_nativeObj, long dst_nativeObj);
// C++: void cv::edgePreservingFilter(Mat src, Mat& dst, int flags = 1, float sigma_s = 60, float sigma_r = 0.4f)
private static native void edgePreservingFilter_0(long src_nativeObj, long dst_nativeObj, int flags, float sigma_s, float sigma_r);
private static native void edgePreservingFilter_1(long src_nativeObj, long dst_nativeObj, int flags, float sigma_s);
private static native void edgePreservingFilter_2(long src_nativeObj, long dst_nativeObj, int flags);
private static native void edgePreservingFilter_3(long src_nativeObj, long dst_nativeObj);
// C++: void cv::detailEnhance(Mat src, Mat& dst, float sigma_s = 10, float sigma_r = 0.15f)
private static native void detailEnhance_0(long src_nativeObj, long dst_nativeObj, float sigma_s, float sigma_r);
private static native void detailEnhance_1(long src_nativeObj, long dst_nativeObj, float sigma_s);
private static native void detailEnhance_2(long src_nativeObj, long dst_nativeObj);
// C++: void cv::pencilSketch(Mat src, Mat& dst1, Mat& dst2, float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f)
private static native void pencilSketch_0(long src_nativeObj, long dst1_nativeObj, long dst2_nativeObj, float sigma_s, float sigma_r, float shade_factor);
private static native void pencilSketch_1(long src_nativeObj, long dst1_nativeObj, long dst2_nativeObj, float sigma_s, float sigma_r);
private static native void pencilSketch_2(long src_nativeObj, long dst1_nativeObj, long dst2_nativeObj, float sigma_s);
private static native void pencilSketch_3(long src_nativeObj, long dst1_nativeObj, long dst2_nativeObj);
// C++: void cv::stylization(Mat src, Mat& dst, float sigma_s = 60, float sigma_r = 0.45f)
private static native void stylization_0(long src_nativeObj, long dst_nativeObj, float sigma_s, float sigma_r);
private static native void stylization_1(long src_nativeObj, long dst_nativeObj, float sigma_s);
private static native void stylization_2(long src_nativeObj, long dst_nativeObj);
}