All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bytedeco.opencv.opencv_face.EigenFaceRecognizer Maven / Gradle / Ivy

// Targeted by JavaCPP version 1.5.9: DO NOT EDIT THIS FILE

package org.bytedeco.opencv.opencv_face;

import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;

import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.openblas.global.openblas_nolapack.*;
import static org.bytedeco.openblas.global.openblas.*;
import org.bytedeco.opencv.opencv_core.*;
import static org.bytedeco.opencv.global.opencv_core.*;
import org.bytedeco.opencv.opencv_imgproc.*;
import static org.bytedeco.opencv.global.opencv_imgproc.*;
import static org.bytedeco.opencv.global.opencv_imgcodecs.*;
import org.bytedeco.opencv.opencv_videoio.*;
import static org.bytedeco.opencv.global.opencv_videoio.*;
import org.bytedeco.opencv.opencv_highgui.*;
import static org.bytedeco.opencv.global.opencv_highgui.*;
import org.bytedeco.opencv.opencv_flann.*;
import static org.bytedeco.opencv.global.opencv_flann.*;
import org.bytedeco.opencv.opencv_features2d.*;
import static org.bytedeco.opencv.global.opencv_features2d.*;
import org.bytedeco.opencv.opencv_calib3d.*;
import static org.bytedeco.opencv.global.opencv_calib3d.*;
import org.bytedeco.opencv.opencv_dnn.*;
import static org.bytedeco.opencv.global.opencv_dnn.*;
import org.bytedeco.opencv.opencv_objdetect.*;
import static org.bytedeco.opencv.global.opencv_objdetect.*;
import org.bytedeco.opencv.opencv_photo.*;
import static org.bytedeco.opencv.global.opencv_photo.*;

import static org.bytedeco.opencv.global.opencv_face.*;


@Namespace("cv::face") @Properties(inherit = org.bytedeco.opencv.presets.opencv_face.class)
public class EigenFaceRecognizer extends BasicFaceRecognizer {
    static { Loader.load(); }
    /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
    public EigenFaceRecognizer(Pointer p) { super(p); }

    /**
    @param num_components The number of components (read: Eigenfaces) kept for this Principal
    Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be
    kept for good reconstruction capabilities. It is based on your input data, so experiment with the
    number. Keeping 80 components should almost always be sufficient.
    @param threshold The threshold applied in the prediction.
    

### Notes:

- Training and prediction must be done on grayscale images, use cvtColor to convert between the color spaces. - **THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your input data has the correct shape, else a meaningful exception is thrown. Use resize to resize the images. - This model does not support updating.

### Model internal data:

- num_components see EigenFaceRecognizer::create. - threshold see EigenFaceRecognizer::create. - eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending). - eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their eigenvalue). - mean The sample mean calculated from the training data. - projections The projections of the training data. - labels The threshold applied in the prediction. If the distance to the nearest neighbor is larger than the threshold, this method returns -1. */ public static native @Ptr EigenFaceRecognizer create(int num_components/*=0*/, double threshold/*=DBL_MAX*/); public static native @Ptr EigenFaceRecognizer create(); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy