All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opencv.bioinspired.Retina Maven / Gradle / Ivy

The newest version!
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.bioinspired;

import org.opencv.bioinspired.Retina;
import org.opencv.core.Algorithm;
import org.opencv.core.Mat;
import org.opencv.core.Size;

// C++: class Retina
/**
 * class which allows the Gipsa/Listic Labs model to be used with OpenCV.
 *
 * This retina model allows spatio-temporal image processing (applied on still images, video sequences).
 * As a summary, these are the retina model properties:
 * 
    *
  • * It applies a spectral whithening (mid-frequency details enhancement) *
  • *
  • * high frequency spatio-temporal noise reduction *
  • *
  • * low frequency luminance to be reduced (luminance range compression) *
  • *
  • * local logarithmic luminance compression allows details to be enhanced in low light conditions *
  • *
* * USE : this model can be used basically for spatio-temporal video effects but also for : * _using the getParvo method output matrix : texture analysiswith enhanced signal to noise ratio and enhanced details robust against input images luminance ranges * _using the getMagno method output matrix : motion analysis also with the previously cited properties * * for more information, reer to the following papers : * Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 * Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. * * The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author : * take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper: * B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 * take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. * more informations in the above cited Jeanny Heraults's book. */ public class Retina extends Algorithm { protected Retina(long addr) { super(addr); } // internal usage only public static Retina __fromPtr__(long addr) { return new Retina(addr); } // // C++: Size cv::bioinspired::Retina::getInputSize() // /** * Retreive retina input buffer size * @return the retina input buffer size */ public Size getInputSize() { return new Size(getInputSize_0(nativeObj)); } // // C++: Size cv::bioinspired::Retina::getOutputSize() // /** * Retreive retina output buffer size that can be different from the input if a spatial log * transformation is applied * @return the retina output buffer size */ public Size getOutputSize() { return new Size(getOutputSize_0(nativeObj)); } // // C++: void cv::bioinspired::Retina::setup(String retinaParameterFile = "", bool applyDefaultSetupOnFailure = true) // /** * Try to open an XML retina parameters file to adjust current retina instance setup * *
    *
  • * if the xml file does not exist, then default setup is applied *
  • *
  • * warning, Exceptions are thrown if read XML file is not valid *
  • *
* @param retinaParameterFile the parameters filename * @param applyDefaultSetupOnFailure set to true if an error must be thrown on error * * You can retrieve the current parameters structure using the method Retina::getParameters and update * it before running method Retina::setup. */ public void setup(String retinaParameterFile, boolean applyDefaultSetupOnFailure) { setup_0(nativeObj, retinaParameterFile, applyDefaultSetupOnFailure); } /** * Try to open an XML retina parameters file to adjust current retina instance setup * *
    *
  • * if the xml file does not exist, then default setup is applied *
  • *
  • * warning, Exceptions are thrown if read XML file is not valid *
  • *
* @param retinaParameterFile the parameters filename * * You can retrieve the current parameters structure using the method Retina::getParameters and update * it before running method Retina::setup. */ public void setup(String retinaParameterFile) { setup_1(nativeObj, retinaParameterFile); } /** * Try to open an XML retina parameters file to adjust current retina instance setup * *
    *
  • * if the xml file does not exist, then default setup is applied *
  • *
  • * warning, Exceptions are thrown if read XML file is not valid *
  • *
* * You can retrieve the current parameters structure using the method Retina::getParameters and update * it before running method Retina::setup. */ public void setup() { setup_2(nativeObj); } // // C++: String cv::bioinspired::Retina::printSetup() // /** * Outputs a string showing the used parameters setup * @return a string which contains formated parameters information */ public String printSetup() { return printSetup_0(nativeObj); } // // C++: void cv::bioinspired::Retina::write(String fs) // /** * Write xml/yml formated parameters information * @param fs the filename of the xml file that will be open and writen with formatted parameters * information */ public void write(String fs) { write_0(nativeObj, fs); } // // C++: void cv::bioinspired::Retina::setupOPLandIPLParvoChannel(bool colorMode = true, bool normaliseOutput = true, float photoreceptorsLocalAdaptationSensitivity = 0.7f, float photoreceptorsTemporalConstant = 0.5f, float photoreceptorsSpatialConstant = 0.53f, float horizontalCellsGain = 0.f, float HcellsTemporalConstant = 1.f, float HcellsSpatialConstant = 7.f, float ganglionCellsSensitivity = 0.7f) // /** * Setup the OPL and IPL parvo channels (see biologocal model) * * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See * reference papers for more informations. * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 * @param colorMode specifies if (true) color is processed of not (false) to then processing gray * level image * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1 * (more log compression effect when value increases) * @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is * frames, typical value is 1 frame * @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is * pixels, typical value is 1 pixel * @param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is * still reachable at the output, typicall value is 0 * @param HcellsTemporalConstant the time constant of the first order low pass filter of the * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is * frames, typical value is 1 frame, as the photoreceptors * @param HcellsSpatialConstant the spatial constant of the first order low pass filter of the * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, * typical value is 5 pixel, this value is also used for local contrast computing when computing * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular * channel model) * @param ganglionCellsSensitivity the compression strengh of the ganglion cells local adaptation * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.7 */ public void setupOPLandIPLParvoChannel(boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain, float HcellsTemporalConstant, float HcellsSpatialConstant, float ganglionCellsSensitivity) { setupOPLandIPLParvoChannel_0(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, HcellsTemporalConstant, HcellsSpatialConstant, ganglionCellsSensitivity); } /** * Setup the OPL and IPL parvo channels (see biologocal model) * * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See * reference papers for more informations. * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 * @param colorMode specifies if (true) color is processed of not (false) to then processing gray * level image * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1 * (more log compression effect when value increases) * @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is * frames, typical value is 1 frame * @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is * pixels, typical value is 1 pixel * @param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is * still reachable at the output, typicall value is 0 * @param HcellsTemporalConstant the time constant of the first order low pass filter of the * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is * frames, typical value is 1 frame, as the photoreceptors * @param HcellsSpatialConstant the spatial constant of the first order low pass filter of the * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, * typical value is 5 pixel, this value is also used for local contrast computing when computing * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular * channel model) * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.7 */ public void setupOPLandIPLParvoChannel(boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain, float HcellsTemporalConstant, float HcellsSpatialConstant) { setupOPLandIPLParvoChannel_1(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, HcellsTemporalConstant, HcellsSpatialConstant); } /** * Setup the OPL and IPL parvo channels (see biologocal model) * * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See * reference papers for more informations. * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 * @param colorMode specifies if (true) color is processed of not (false) to then processing gray * level image * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1 * (more log compression effect when value increases) * @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is * frames, typical value is 1 frame * @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is * pixels, typical value is 1 pixel * @param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is * still reachable at the output, typicall value is 0 * @param HcellsTemporalConstant the time constant of the first order low pass filter of the * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is * frames, typical value is 1 frame, as the photoreceptors * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, * typical value is 5 pixel, this value is also used for local contrast computing when computing * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular * channel model) * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.7 */ public void setupOPLandIPLParvoChannel(boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain, float HcellsTemporalConstant) { setupOPLandIPLParvoChannel_2(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, HcellsTemporalConstant); } /** * Setup the OPL and IPL parvo channels (see biologocal model) * * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See * reference papers for more informations. * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 * @param colorMode specifies if (true) color is processed of not (false) to then processing gray * level image * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1 * (more log compression effect when value increases) * @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is * frames, typical value is 1 frame * @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is * pixels, typical value is 1 pixel * @param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is * still reachable at the output, typicall value is 0 * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is * frames, typical value is 1 frame, as the photoreceptors * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, * typical value is 5 pixel, this value is also used for local contrast computing when computing * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular * channel model) * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.7 */ public void setupOPLandIPLParvoChannel(boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain) { setupOPLandIPLParvoChannel_3(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain); } /** * Setup the OPL and IPL parvo channels (see biologocal model) * * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See * reference papers for more informations. * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 * @param colorMode specifies if (true) color is processed of not (false) to then processing gray * level image * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1 * (more log compression effect when value increases) * @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is * frames, typical value is 1 frame * @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is * pixels, typical value is 1 pixel * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is * still reachable at the output, typicall value is 0 * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is * frames, typical value is 1 frame, as the photoreceptors * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, * typical value is 5 pixel, this value is also used for local contrast computing when computing * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular * channel model) * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.7 */ public void setupOPLandIPLParvoChannel(boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant) { setupOPLandIPLParvoChannel_4(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant); } /** * Setup the OPL and IPL parvo channels (see biologocal model) * * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See * reference papers for more informations. * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 * @param colorMode specifies if (true) color is processed of not (false) to then processing gray * level image * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1 * (more log compression effect when value increases) * @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is * frames, typical value is 1 frame * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is * pixels, typical value is 1 pixel * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is * still reachable at the output, typicall value is 0 * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is * frames, typical value is 1 frame, as the photoreceptors * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, * typical value is 5 pixel, this value is also used for local contrast computing when computing * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular * channel model) * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.7 */ public void setupOPLandIPLParvoChannel(boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant) { setupOPLandIPLParvoChannel_5(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant); } /** * Setup the OPL and IPL parvo channels (see biologocal model) * * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See * reference papers for more informations. * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 * @param colorMode specifies if (true) color is processed of not (false) to then processing gray * level image * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1 * (more log compression effect when value increases) * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is * frames, typical value is 1 frame * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is * pixels, typical value is 1 pixel * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is * still reachable at the output, typicall value is 0 * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is * frames, typical value is 1 frame, as the photoreceptors * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, * typical value is 5 pixel, this value is also used for local contrast computing when computing * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular * channel model) * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.7 */ public void setupOPLandIPLParvoChannel(boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity) { setupOPLandIPLParvoChannel_6(nativeObj, colorMode, normaliseOutput, photoreceptorsLocalAdaptationSensitivity); } /** * Setup the OPL and IPL parvo channels (see biologocal model) * * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See * reference papers for more informations. * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 * @param colorMode specifies if (true) color is processed of not (false) to then processing gray * level image * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * (more log compression effect when value increases) * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is * frames, typical value is 1 frame * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is * pixels, typical value is 1 pixel * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is * still reachable at the output, typicall value is 0 * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is * frames, typical value is 1 frame, as the photoreceptors * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, * typical value is 5 pixel, this value is also used for local contrast computing when computing * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular * channel model) * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.7 */ public void setupOPLandIPLParvoChannel(boolean colorMode, boolean normaliseOutput) { setupOPLandIPLParvoChannel_7(nativeObj, colorMode, normaliseOutput); } /** * Setup the OPL and IPL parvo channels (see biologocal model) * * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See * reference papers for more informations. * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 * @param colorMode specifies if (true) color is processed of not (false) to then processing gray * level image * (more log compression effect when value increases) * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is * frames, typical value is 1 frame * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is * pixels, typical value is 1 pixel * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is * still reachable at the output, typicall value is 0 * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is * frames, typical value is 1 frame, as the photoreceptors * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, * typical value is 5 pixel, this value is also used for local contrast computing when computing * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular * channel model) * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.7 */ public void setupOPLandIPLParvoChannel(boolean colorMode) { setupOPLandIPLParvoChannel_8(nativeObj, colorMode); } /** * Setup the OPL and IPL parvo channels (see biologocal model) * * OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering * which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance * (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the * Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See * reference papers for more informations. * for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 * level image * (more log compression effect when value increases) * the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is * frames, typical value is 1 frame * the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is * pixels, typical value is 1 pixel * the output is zero, if the parameter is near 1, then, the luminance is not filtered and is * still reachable at the output, typicall value is 0 * horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is * frames, typical value is 1 frame, as the photoreceptors * horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, * typical value is 5 pixel, this value is also used for local contrast computing when computing * the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular * channel model) * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.7 */ public void setupOPLandIPLParvoChannel() { setupOPLandIPLParvoChannel_9(nativeObj); } // // C++: void cv::bioinspired::Retina::setupIPLMagnoChannel(bool normaliseOutput = true, float parasolCells_beta = 0.f, float parasolCells_tau = 0.f, float parasolCells_k = 7.f, float amacrinCellsTemporalCutFrequency = 1.2f, float V0CompressionParameter = 0.95f, float localAdaptintegration_tau = 0.f, float localAdaptintegration_k = 7.f) // /** * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel * * this channel processes signals output from OPL processing stage in peripheral vision, it allows * motion information enhancement. It is decorrelated from the details channel. See reference * papers for more details. * * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the * IPL level of the retina (for ganglion cells local adaptation), typical value is 0 * @param parasolCells_tau the low pass filter time constant used for local contrast adaptation * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical * value is 0 (immediate response) * @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical * value is 5 * @param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of * the magnocellular way (motion information channel), unit is frames, typical value is 1.2 * @param V0CompressionParameter the compression strengh of the ganglion cells local adaptation * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.95 * @param localAdaptintegration_tau specifies the temporal constant of the low pas filter * involved in the computation of the local "motion mean" for the local adaptation computation * @param localAdaptintegration_k specifies the spatial constant of the low pas filter involved * in the computation of the local "motion mean" for the local adaptation computation */ public void setupIPLMagnoChannel(boolean normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency, float V0CompressionParameter, float localAdaptintegration_tau, float localAdaptintegration_k) { setupIPLMagnoChannel_0(nativeObj, normaliseOutput, parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k); } /** * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel * * this channel processes signals output from OPL processing stage in peripheral vision, it allows * motion information enhancement. It is decorrelated from the details channel. See reference * papers for more details. * * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the * IPL level of the retina (for ganglion cells local adaptation), typical value is 0 * @param parasolCells_tau the low pass filter time constant used for local contrast adaptation * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical * value is 0 (immediate response) * @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical * value is 5 * @param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of * the magnocellular way (motion information channel), unit is frames, typical value is 1.2 * @param V0CompressionParameter the compression strengh of the ganglion cells local adaptation * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.95 * @param localAdaptintegration_tau specifies the temporal constant of the low pas filter * involved in the computation of the local "motion mean" for the local adaptation computation * in the computation of the local "motion mean" for the local adaptation computation */ public void setupIPLMagnoChannel(boolean normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency, float V0CompressionParameter, float localAdaptintegration_tau) { setupIPLMagnoChannel_1(nativeObj, normaliseOutput, parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau); } /** * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel * * this channel processes signals output from OPL processing stage in peripheral vision, it allows * motion information enhancement. It is decorrelated from the details channel. See reference * papers for more details. * * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the * IPL level of the retina (for ganglion cells local adaptation), typical value is 0 * @param parasolCells_tau the low pass filter time constant used for local contrast adaptation * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical * value is 0 (immediate response) * @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical * value is 5 * @param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of * the magnocellular way (motion information channel), unit is frames, typical value is 1.2 * @param V0CompressionParameter the compression strengh of the ganglion cells local adaptation * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.95 * involved in the computation of the local "motion mean" for the local adaptation computation * in the computation of the local "motion mean" for the local adaptation computation */ public void setupIPLMagnoChannel(boolean normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency, float V0CompressionParameter) { setupIPLMagnoChannel_2(nativeObj, normaliseOutput, parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter); } /** * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel * * this channel processes signals output from OPL processing stage in peripheral vision, it allows * motion information enhancement. It is decorrelated from the details channel. See reference * papers for more details. * * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the * IPL level of the retina (for ganglion cells local adaptation), typical value is 0 * @param parasolCells_tau the low pass filter time constant used for local contrast adaptation * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical * value is 0 (immediate response) * @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical * value is 5 * @param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of * the magnocellular way (motion information channel), unit is frames, typical value is 1.2 * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.95 * involved in the computation of the local "motion mean" for the local adaptation computation * in the computation of the local "motion mean" for the local adaptation computation */ public void setupIPLMagnoChannel(boolean normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency) { setupIPLMagnoChannel_3(nativeObj, normaliseOutput, parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency); } /** * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel * * this channel processes signals output from OPL processing stage in peripheral vision, it allows * motion information enhancement. It is decorrelated from the details channel. See reference * papers for more details. * * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the * IPL level of the retina (for ganglion cells local adaptation), typical value is 0 * @param parasolCells_tau the low pass filter time constant used for local contrast adaptation * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical * value is 0 (immediate response) * @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical * value is 5 * the magnocellular way (motion information channel), unit is frames, typical value is 1.2 * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.95 * involved in the computation of the local "motion mean" for the local adaptation computation * in the computation of the local "motion mean" for the local adaptation computation */ public void setupIPLMagnoChannel(boolean normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k) { setupIPLMagnoChannel_4(nativeObj, normaliseOutput, parasolCells_beta, parasolCells_tau, parasolCells_k); } /** * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel * * this channel processes signals output from OPL processing stage in peripheral vision, it allows * motion information enhancement. It is decorrelated from the details channel. See reference * papers for more details. * * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the * IPL level of the retina (for ganglion cells local adaptation), typical value is 0 * @param parasolCells_tau the low pass filter time constant used for local contrast adaptation * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical * value is 0 (immediate response) * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical * value is 5 * the magnocellular way (motion information channel), unit is frames, typical value is 1.2 * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.95 * involved in the computation of the local "motion mean" for the local adaptation computation * in the computation of the local "motion mean" for the local adaptation computation */ public void setupIPLMagnoChannel(boolean normaliseOutput, float parasolCells_beta, float parasolCells_tau) { setupIPLMagnoChannel_5(nativeObj, normaliseOutput, parasolCells_beta, parasolCells_tau); } /** * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel * * this channel processes signals output from OPL processing stage in peripheral vision, it allows * motion information enhancement. It is decorrelated from the details channel. See reference * papers for more details. * * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the * IPL level of the retina (for ganglion cells local adaptation), typical value is 0 * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical * value is 0 (immediate response) * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical * value is 5 * the magnocellular way (motion information channel), unit is frames, typical value is 1.2 * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.95 * involved in the computation of the local "motion mean" for the local adaptation computation * in the computation of the local "motion mean" for the local adaptation computation */ public void setupIPLMagnoChannel(boolean normaliseOutput, float parasolCells_beta) { setupIPLMagnoChannel_6(nativeObj, normaliseOutput, parasolCells_beta); } /** * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel * * this channel processes signals output from OPL processing stage in peripheral vision, it allows * motion information enhancement. It is decorrelated from the details channel. See reference * papers for more details. * * @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) * IPL level of the retina (for ganglion cells local adaptation), typical value is 0 * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical * value is 0 (immediate response) * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical * value is 5 * the magnocellular way (motion information channel), unit is frames, typical value is 1.2 * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.95 * involved in the computation of the local "motion mean" for the local adaptation computation * in the computation of the local "motion mean" for the local adaptation computation */ public void setupIPLMagnoChannel(boolean normaliseOutput) { setupIPLMagnoChannel_7(nativeObj, normaliseOutput); } /** * Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel * * this channel processes signals output from OPL processing stage in peripheral vision, it allows * motion information enhancement. It is decorrelated from the details channel. See reference * papers for more details. * * IPL level of the retina (for ganglion cells local adaptation), typical value is 0 * at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical * value is 0 (immediate response) * at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical * value is 5 * the magnocellular way (motion information channel), unit is frames, typical value is 1.2 * output, set a value between 0.6 and 1 for best results, a high value increases more the low * value sensitivity... and the output saturates faster, recommended value: 0.95 * involved in the computation of the local "motion mean" for the local adaptation computation * in the computation of the local "motion mean" for the local adaptation computation */ public void setupIPLMagnoChannel() { setupIPLMagnoChannel_8(nativeObj); } // // C++: void cv::bioinspired::Retina::run(Mat inputImage) // /** * Method which allows retina to be applied on an input image, * * after run, encapsulated retina module is ready to deliver its outputs using dedicated * acccessors, see getParvo and getMagno methods * @param inputImage the input Mat image to be processed, can be gray level or BGR coded in any * format (from 8bit to 16bits) */ public void run(Mat inputImage) { run_0(nativeObj, inputImage.nativeObj); } // // C++: void cv::bioinspired::Retina::applyFastToneMapping(Mat inputImage, Mat& outputToneMappedImage) // /** * Method which processes an image in the aim to correct its luminance correct * backlight problems, enhance details in shadows. * * This method is designed to perform High Dynamic Range image tone mapping (compress >8bit/pixel * images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model * (simplified version of the run/getParvo methods call) since it does not include the * spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral * whitening and many other stuff. However, it works great for tone mapping and in a faster way. * * Check the demos and experiments section to see examples and the way to perform tone mapping * using the original retina model and the method. * * @param inputImage the input image to process (should be coded in float format : CV_32F, * CV_32FC1, CV_32F_C3, CV_32F_C4, the 4th channel won't be considered). * @param outputToneMappedImage the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format). */ public void applyFastToneMapping(Mat inputImage, Mat outputToneMappedImage) { applyFastToneMapping_0(nativeObj, inputImage.nativeObj, outputToneMappedImage.nativeObj); } // // C++: void cv::bioinspired::Retina::getParvo(Mat& retinaOutput_parvo) // /** * Accessor of the details channel of the retina (models foveal vision). * * Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while * the non RAW method allows a normalized matrix to be retrieved. * * @param retinaOutput_parvo the output buffer (reallocated if necessary), format can be : *
    *
  • * a Mat, this output is rescaled for standard 8bits image processing use in OpenCV *
  • *
  • * RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1, * B2, ...Bn), this output is the original retina filter model output, without any * quantification or rescaling. * SEE: getParvoRAW *
  • *
*/ public void getParvo(Mat retinaOutput_parvo) { getParvo_0(nativeObj, retinaOutput_parvo.nativeObj); } // // C++: void cv::bioinspired::Retina::getParvoRAW(Mat& retinaOutput_parvo) // /** * Accessor of the details channel of the retina (models foveal vision). * SEE: getParvo * @param retinaOutput_parvo automatically generated */ public void getParvoRAW(Mat retinaOutput_parvo) { getParvoRAW_0(nativeObj, retinaOutput_parvo.nativeObj); } // // C++: void cv::bioinspired::Retina::getMagno(Mat& retinaOutput_magno) // /** * Accessor of the motion channel of the retina (models peripheral vision). * * Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while * the non RAW method allows a normalized matrix to be retrieved. * @param retinaOutput_magno the output buffer (reallocated if necessary), format can be : *
    *
  • * a Mat, this output is rescaled for standard 8bits image processing use in OpenCV *
  • *
  • * RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the * original retina filter model output, without any quantification or rescaling. * SEE: getMagnoRAW *
  • *
*/ public void getMagno(Mat retinaOutput_magno) { getMagno_0(nativeObj, retinaOutput_magno.nativeObj); } // // C++: void cv::bioinspired::Retina::getMagnoRAW(Mat& retinaOutput_magno) // /** * Accessor of the motion channel of the retina (models peripheral vision). * SEE: getMagno * @param retinaOutput_magno automatically generated */ public void getMagnoRAW(Mat retinaOutput_magno) { getMagnoRAW_0(nativeObj, retinaOutput_magno.nativeObj); } // // C++: Mat cv::bioinspired::Retina::getMagnoRAW() // public Mat getMagnoRAW() { return new Mat(getMagnoRAW_1(nativeObj)); } // // C++: Mat cv::bioinspired::Retina::getParvoRAW() // public Mat getParvoRAW() { return new Mat(getParvoRAW_1(nativeObj)); } // // C++: void cv::bioinspired::Retina::setColorSaturation(bool saturateColors = true, float colorSaturationValue = 4.0f) // /** * Activate color saturation as the final step of the color demultiplexing process -> this * saturation is a sigmoide function applied to each channel of the demultiplexed image. * @param saturateColors boolean that activates color saturation (if true) or desactivate (if false) * @param colorSaturationValue the saturation factor : a simple factor applied on the chrominance * buffers */ public void setColorSaturation(boolean saturateColors, float colorSaturationValue) { setColorSaturation_0(nativeObj, saturateColors, colorSaturationValue); } /** * Activate color saturation as the final step of the color demultiplexing process -> this * saturation is a sigmoide function applied to each channel of the demultiplexed image. * @param saturateColors boolean that activates color saturation (if true) or desactivate (if false) * buffers */ public void setColorSaturation(boolean saturateColors) { setColorSaturation_1(nativeObj, saturateColors); } /** * Activate color saturation as the final step of the color demultiplexing process -> this * saturation is a sigmoide function applied to each channel of the demultiplexed image. * buffers */ public void setColorSaturation() { setColorSaturation_2(nativeObj); } // // C++: void cv::bioinspired::Retina::clearBuffers() // /** * Clears all retina buffers * * (equivalent to opening the eyes after a long period of eye close ;o) whatchout the temporal * transition occuring just after this method call. */ public void clearBuffers() { clearBuffers_0(nativeObj); } // // C++: void cv::bioinspired::Retina::activateMovingContoursProcessing(bool activate) // /** * Activate/desactivate the Magnocellular pathway processing (motion information extraction), by * default, it is activated * @param activate true if Magnocellular output should be activated, false if not... if activated, * the Magnocellular output can be retrieved using the getMagno methods */ public void activateMovingContoursProcessing(boolean activate) { activateMovingContoursProcessing_0(nativeObj, activate); } // // C++: void cv::bioinspired::Retina::activateContoursProcessing(bool activate) // /** * Activate/desactivate the Parvocellular pathway processing (contours information extraction), by * default, it is activated * @param activate true if Parvocellular (contours information extraction) output should be * activated, false if not... if activated, the Parvocellular output can be retrieved using the * Retina::getParvo methods */ public void activateContoursProcessing(boolean activate) { activateContoursProcessing_0(nativeObj, activate); } // // C++: static Ptr_Retina cv::bioinspired::Retina::create(Size inputSize) // public static Retina create(Size inputSize) { return Retina.__fromPtr__(create_0(inputSize.width, inputSize.height)); } // // C++: static Ptr_Retina cv::bioinspired::Retina::create(Size inputSize, bool colorMode, int colorSamplingMethod = RETINA_COLOR_BAYER, bool useRetinaLogSampling = false, float reductionFactor = 1.0f, float samplingStrength = 10.0f) // /** * Constructors from standardized interfaces : retreive a smart pointer to a Retina instance * * @param inputSize the input frame size * @param colorMode the chosen processing mode : with or without color processing * @param colorSamplingMethod specifies which kind of color sampling will be used : *
    *
  • * cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice *
  • *
  • * cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... *
  • *
  • * cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling *
  • *
* @param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can * be used * @param reductionFactor only usefull if param useRetinaLogSampling=true, specifies the reduction * factor of the output frame (as the center (fovea) is high resolution and corners can be * underscaled, then a reduction of the output is allowed without precision leak * @param samplingStrength only usefull if param useRetinaLogSampling=true, specifies the strength of * the log scale that is applied * @return automatically generated */ public static Retina create(Size inputSize, boolean colorMode, int colorSamplingMethod, boolean useRetinaLogSampling, float reductionFactor, float samplingStrength) { return Retina.__fromPtr__(create_1(inputSize.width, inputSize.height, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor, samplingStrength)); } /** * Constructors from standardized interfaces : retreive a smart pointer to a Retina instance * * @param inputSize the input frame size * @param colorMode the chosen processing mode : with or without color processing * @param colorSamplingMethod specifies which kind of color sampling will be used : *
    *
  • * cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice *
  • *
  • * cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... *
  • *
  • * cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling *
  • *
* @param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can * be used * @param reductionFactor only usefull if param useRetinaLogSampling=true, specifies the reduction * factor of the output frame (as the center (fovea) is high resolution and corners can be * underscaled, then a reduction of the output is allowed without precision leak * the log scale that is applied * @return automatically generated */ public static Retina create(Size inputSize, boolean colorMode, int colorSamplingMethod, boolean useRetinaLogSampling, float reductionFactor) { return Retina.__fromPtr__(create_2(inputSize.width, inputSize.height, colorMode, colorSamplingMethod, useRetinaLogSampling, reductionFactor)); } /** * Constructors from standardized interfaces : retreive a smart pointer to a Retina instance * * @param inputSize the input frame size * @param colorMode the chosen processing mode : with or without color processing * @param colorSamplingMethod specifies which kind of color sampling will be used : *
    *
  • * cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice *
  • *
  • * cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... *
  • *
  • * cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling *
  • *
* @param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can * be used * factor of the output frame (as the center (fovea) is high resolution and corners can be * underscaled, then a reduction of the output is allowed without precision leak * the log scale that is applied * @return automatically generated */ public static Retina create(Size inputSize, boolean colorMode, int colorSamplingMethod, boolean useRetinaLogSampling) { return Retina.__fromPtr__(create_3(inputSize.width, inputSize.height, colorMode, colorSamplingMethod, useRetinaLogSampling)); } /** * Constructors from standardized interfaces : retreive a smart pointer to a Retina instance * * @param inputSize the input frame size * @param colorMode the chosen processing mode : with or without color processing * @param colorSamplingMethod specifies which kind of color sampling will be used : *
    *
  • * cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice *
  • *
  • * cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... *
  • *
  • * cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling *
  • *
* be used * factor of the output frame (as the center (fovea) is high resolution and corners can be * underscaled, then a reduction of the output is allowed without precision leak * the log scale that is applied * @return automatically generated */ public static Retina create(Size inputSize, boolean colorMode, int colorSamplingMethod) { return Retina.__fromPtr__(create_4(inputSize.width, inputSize.height, colorMode, colorSamplingMethod)); } /** * Constructors from standardized interfaces : retreive a smart pointer to a Retina instance * * @param inputSize the input frame size * @param colorMode the chosen processing mode : with or without color processing *
    *
  • * cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice *
  • *
  • * cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... *
  • *
  • * cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling *
  • *
* be used * factor of the output frame (as the center (fovea) is high resolution and corners can be * underscaled, then a reduction of the output is allowed without precision leak * the log scale that is applied * @return automatically generated */ public static Retina create(Size inputSize, boolean colorMode) { return Retina.__fromPtr__(create_5(inputSize.width, inputSize.height, colorMode)); } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: Size cv::bioinspired::Retina::getInputSize() private static native double[] getInputSize_0(long nativeObj); // C++: Size cv::bioinspired::Retina::getOutputSize() private static native double[] getOutputSize_0(long nativeObj); // C++: void cv::bioinspired::Retina::setup(String retinaParameterFile = "", bool applyDefaultSetupOnFailure = true) private static native void setup_0(long nativeObj, String retinaParameterFile, boolean applyDefaultSetupOnFailure); private static native void setup_1(long nativeObj, String retinaParameterFile); private static native void setup_2(long nativeObj); // C++: String cv::bioinspired::Retina::printSetup() private static native String printSetup_0(long nativeObj); // C++: void cv::bioinspired::Retina::write(String fs) private static native void write_0(long nativeObj, String fs); // C++: void cv::bioinspired::Retina::setupOPLandIPLParvoChannel(bool colorMode = true, bool normaliseOutput = true, float photoreceptorsLocalAdaptationSensitivity = 0.7f, float photoreceptorsTemporalConstant = 0.5f, float photoreceptorsSpatialConstant = 0.53f, float horizontalCellsGain = 0.f, float HcellsTemporalConstant = 1.f, float HcellsSpatialConstant = 7.f, float ganglionCellsSensitivity = 0.7f) private static native void setupOPLandIPLParvoChannel_0(long nativeObj, boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain, float HcellsTemporalConstant, float HcellsSpatialConstant, float ganglionCellsSensitivity); private static native void setupOPLandIPLParvoChannel_1(long nativeObj, boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain, float HcellsTemporalConstant, float HcellsSpatialConstant); private static native void setupOPLandIPLParvoChannel_2(long nativeObj, boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain, float HcellsTemporalConstant); private static native void setupOPLandIPLParvoChannel_3(long nativeObj, boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant, float horizontalCellsGain); private static native void setupOPLandIPLParvoChannel_4(long nativeObj, boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant, float photoreceptorsSpatialConstant); private static native void setupOPLandIPLParvoChannel_5(long nativeObj, boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity, float photoreceptorsTemporalConstant); private static native void setupOPLandIPLParvoChannel_6(long nativeObj, boolean colorMode, boolean normaliseOutput, float photoreceptorsLocalAdaptationSensitivity); private static native void setupOPLandIPLParvoChannel_7(long nativeObj, boolean colorMode, boolean normaliseOutput); private static native void setupOPLandIPLParvoChannel_8(long nativeObj, boolean colorMode); private static native void setupOPLandIPLParvoChannel_9(long nativeObj); // C++: void cv::bioinspired::Retina::setupIPLMagnoChannel(bool normaliseOutput = true, float parasolCells_beta = 0.f, float parasolCells_tau = 0.f, float parasolCells_k = 7.f, float amacrinCellsTemporalCutFrequency = 1.2f, float V0CompressionParameter = 0.95f, float localAdaptintegration_tau = 0.f, float localAdaptintegration_k = 7.f) private static native void setupIPLMagnoChannel_0(long nativeObj, boolean normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency, float V0CompressionParameter, float localAdaptintegration_tau, float localAdaptintegration_k); private static native void setupIPLMagnoChannel_1(long nativeObj, boolean normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency, float V0CompressionParameter, float localAdaptintegration_tau); private static native void setupIPLMagnoChannel_2(long nativeObj, boolean normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency, float V0CompressionParameter); private static native void setupIPLMagnoChannel_3(long nativeObj, boolean normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k, float amacrinCellsTemporalCutFrequency); private static native void setupIPLMagnoChannel_4(long nativeObj, boolean normaliseOutput, float parasolCells_beta, float parasolCells_tau, float parasolCells_k); private static native void setupIPLMagnoChannel_5(long nativeObj, boolean normaliseOutput, float parasolCells_beta, float parasolCells_tau); private static native void setupIPLMagnoChannel_6(long nativeObj, boolean normaliseOutput, float parasolCells_beta); private static native void setupIPLMagnoChannel_7(long nativeObj, boolean normaliseOutput); private static native void setupIPLMagnoChannel_8(long nativeObj); // C++: void cv::bioinspired::Retina::run(Mat inputImage) private static native void run_0(long nativeObj, long inputImage_nativeObj); // C++: void cv::bioinspired::Retina::applyFastToneMapping(Mat inputImage, Mat& outputToneMappedImage) private static native void applyFastToneMapping_0(long nativeObj, long inputImage_nativeObj, long outputToneMappedImage_nativeObj); // C++: void cv::bioinspired::Retina::getParvo(Mat& retinaOutput_parvo) private static native void getParvo_0(long nativeObj, long retinaOutput_parvo_nativeObj); // C++: void cv::bioinspired::Retina::getParvoRAW(Mat& retinaOutput_parvo) private static native void getParvoRAW_0(long nativeObj, long retinaOutput_parvo_nativeObj); // C++: void cv::bioinspired::Retina::getMagno(Mat& retinaOutput_magno) private static native void getMagno_0(long nativeObj, long retinaOutput_magno_nativeObj); // C++: void cv::bioinspired::Retina::getMagnoRAW(Mat& retinaOutput_magno) private static native void getMagnoRAW_0(long nativeObj, long retinaOutput_magno_nativeObj); // C++: Mat cv::bioinspired::Retina::getMagnoRAW() private static native long getMagnoRAW_1(long nativeObj); // C++: Mat cv::bioinspired::Retina::getParvoRAW() private static native long getParvoRAW_1(long nativeObj); // C++: void cv::bioinspired::Retina::setColorSaturation(bool saturateColors = true, float colorSaturationValue = 4.0f) private static native void setColorSaturation_0(long nativeObj, boolean saturateColors, float colorSaturationValue); private static native void setColorSaturation_1(long nativeObj, boolean saturateColors); private static native void setColorSaturation_2(long nativeObj); // C++: void cv::bioinspired::Retina::clearBuffers() private static native void clearBuffers_0(long nativeObj); // C++: void cv::bioinspired::Retina::activateMovingContoursProcessing(bool activate) private static native void activateMovingContoursProcessing_0(long nativeObj, boolean activate); // C++: void cv::bioinspired::Retina::activateContoursProcessing(bool activate) private static native void activateContoursProcessing_0(long nativeObj, boolean activate); // C++: static Ptr_Retina cv::bioinspired::Retina::create(Size inputSize) private static native long create_0(double inputSize_width, double inputSize_height); // C++: static Ptr_Retina cv::bioinspired::Retina::create(Size inputSize, bool colorMode, int colorSamplingMethod = RETINA_COLOR_BAYER, bool useRetinaLogSampling = false, float reductionFactor = 1.0f, float samplingStrength = 10.0f) private static native long create_1(double inputSize_width, double inputSize_height, boolean colorMode, int colorSamplingMethod, boolean useRetinaLogSampling, float reductionFactor, float samplingStrength); private static native long create_2(double inputSize_width, double inputSize_height, boolean colorMode, int colorSamplingMethod, boolean useRetinaLogSampling, float reductionFactor); private static native long create_3(double inputSize_width, double inputSize_height, boolean colorMode, int colorSamplingMethod, boolean useRetinaLogSampling); private static native long create_4(double inputSize_width, double inputSize_height, boolean colorMode, int colorSamplingMethod); private static native long create_5(double inputSize_width, double inputSize_height, boolean colorMode); // native support for java finalize() private static native void delete(long nativeObj); }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy