org.bytedeco.pytorch.qint8 Maven / Gradle / Ivy
// Targeted by JavaCPP version 1.5.7: DO NOT EDIT THIS FILE
package org.bytedeco.pytorch;
import org.bytedeco.pytorch.Allocator;
import org.bytedeco.pytorch.Function;
import org.bytedeco.pytorch.Module;
import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;
import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.openblas.global.openblas_nolapack.*;
import static org.bytedeco.openblas.global.openblas.*;
import static org.bytedeco.pytorch.global.torch.*;
/**
* This is the data type for quantized Tensors. Right now we only have
* qint8 which is for 8 bit Tensors, and qint32 for 32 bit int Tensors,
* we might have 4 bit, 2 bit or 1 bit data types in the future.
*/
@Namespace("c10") @NoOffset @Properties(inherit = org.bytedeco.pytorch.presets.torch.class)
public class qint8 extends Pointer {
static { Loader.load(); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public qint8(Pointer p) { super(p); }
/** Native array allocator. Access with {@link Pointer#position(long)}. */
public qint8(long size) { super((Pointer)null); allocateArray(size); }
private native void allocateArray(long size);
@Override public qint8 position(long position) {
return (qint8)super.position(position);
}
@Override public qint8 getPointer(long i) {
return new qint8((Pointer)this).offsetAddress(i);
}
public native byte val_(); public native qint8 val_(byte setter);
public qint8() { super((Pointer)null); allocate(); }
private native void allocate();
public qint8(byte val) { super((Pointer)null); allocate(val); }
private native void allocate(byte val);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy