org.bytedeco.pytorch.MNISTRandomDataLoader Maven / Gradle / Ivy
// Targeted by JavaCPP version 1.5.9: DO NOT EDIT THIS FILE
package org.bytedeco.pytorch;
import org.bytedeco.pytorch.Allocator;
import org.bytedeco.pytorch.Function;
import org.bytedeco.pytorch.Module;
import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;
import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.openblas.global.openblas_nolapack.*;
import static org.bytedeco.openblas.global.openblas.*;
import static org.bytedeco.pytorch.global.torch.*;
/** A dataloader for stateless datasets.
*
* This dataloader follows the traditional PyTorch dataloader design, whereby a
* (posssibly) stateful sampler produces *batch requests* for a stateless
* dataset, which acts as a simple batch request to batch mapping. The batch
* request will often be an array of indices, and if the dataset is a simple
* image dataset, the dataset would produce the images at those indices. */
@Name("torch::data::StatelessDataLoader > >,torch::data::samplers::RandomSampler>") @NoOffset @Properties(inherit = org.bytedeco.pytorch.presets.torch.class)
public class MNISTRandomDataLoader extends MNISTRandomDataLoaderBase {
static { Loader.load(); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public MNISTRandomDataLoader(Pointer p) { super(p); }
/** Constructs the {@code StatelessDataLoader} from a {@code dataset}, a {@code sampler} and
* some {@code options}. */
public MNISTRandomDataLoader(
@ByVal MNISTMapDataset dataset,
@ByVal RandomSampler sampler,
@ByVal DataLoaderOptions options) { super((Pointer)null); allocate(dataset, sampler, options); }
private native void allocate(
@ByVal MNISTMapDataset dataset,
@ByVal RandomSampler sampler,
@ByVal DataLoaderOptions options);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy