All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bytedeco.pytorch.RNNImpl Maven / Gradle / Ivy

// Targeted by JavaCPP version 1.5.9: DO NOT EDIT THIS FILE

package org.bytedeco.pytorch;

import org.bytedeco.pytorch.Allocator;
import org.bytedeco.pytorch.Function;
import org.bytedeco.pytorch.Module;
import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;

import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.openblas.global.openblas_nolapack.*;
import static org.bytedeco.openblas.global.openblas.*;

import static org.bytedeco.pytorch.global.torch.*;
 // namespace detail

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ RNN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/** A multi-layer Elman RNN module with Tanh or ReLU activation.
 *  See https://pytorch.org/docs/master/generated/torch.nn.RNN.html to learn
 *  about the exact behavior of this module.
 * 
 *  See the documentation for {@code torch::nn::RNNOptions} class to learn what
 *  constructor arguments are supported for this module.
 * 
 *  Example:
 *  
{@code
 *  RNN model(RNNOptions(128,
 *  64).num_layers(3).dropout(0.2).nonlinearity(torch::kTanh));
 *  }
*/ @Namespace("torch::nn") @NoOffset @Properties(inherit = org.bytedeco.pytorch.presets.torch.class) public class RNNImpl extends RNNImplBase { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ public RNNImpl(Pointer p) { super(p); } public RNNImpl(@Cast("int64_t") long input_size, @Cast("int64_t") long hidden_size) { super((Pointer)null); allocate(input_size, hidden_size); } @NoDeallocator private native void allocate(@Cast("int64_t") long input_size, @Cast("int64_t") long hidden_size); public RNNImpl(@Const @ByRef RNNOptions options_) { super((Pointer)null); allocate(options_); } @NoDeallocator private native void allocate(@Const @ByRef RNNOptions options_); public native @ByVal TensorTensorTuple forward(@Const @ByRef Tensor input, @ByVal(nullValue = "at::Tensor{}") Tensor hx); public native @ByVal TensorTensorTuple forward(@Const @ByRef Tensor input); public native @ByVal PackedSequenceTensorTuple forward_with_packed_input( @Const @ByRef PackedSequence packed_input, @ByVal(nullValue = "at::Tensor{}") Tensor hx); public native @ByVal PackedSequenceTensorTuple forward_with_packed_input( @Const @ByRef PackedSequence packed_input); public native @ByRef RNNOptions options(); public native RNNImpl options(RNNOptions setter); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy