All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bytedeco.pytorch.NLLLossImpl Maven / Gradle / Ivy

The newest version!
// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE

package org.bytedeco.pytorch;

import org.bytedeco.pytorch.Allocator;
import org.bytedeco.pytorch.Function;
import org.bytedeco.pytorch.Module;
import org.bytedeco.javacpp.annotation.Cast;
import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;

import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.openblas.global.openblas_nolapack.*;
import static org.bytedeco.openblas.global.openblas.*;
import org.bytedeco.javacpp.chrono.*;
import static org.bytedeco.javacpp.global.chrono.*;

import static org.bytedeco.pytorch.global.torch.*;


// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ NLLLoss ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/** The negative log likelihood loss. It is useful to train a classification
 *  problem with {@code C} classes.
 *  See https://pytorch.org/docs/main/nn.html#torch.nn.NLLLoss to learn
 *  about the exact behavior of this module.
 * 
 *  See the documentation for {@code torch::nn::NLLLossOptions} class to learn what
 *  constructor arguments are supported for this module.
 * 
 *  Example:
 *  
{@code
 *  NLLLoss model(NLLLossOptions().ignore_index(-100).reduction(torch::kMean));
 *  }
*/ @Namespace("torch::nn") @NoOffset @Properties(inherit = org.bytedeco.pytorch.presets.torch.class) public class NLLLossImpl extends NLLLossImplCloneable { static { Loader.load(); } /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ public NLLLossImpl(Pointer p) { super(p); } public NLLLossImpl(@ByVal(nullValue = "torch::nn::NLLLossOptions{}") NLLLossOptions options_) { super((Pointer)null); allocate(options_); } @SharedPtr @Name("std::make_shared") private native void allocate(@ByVal(nullValue = "torch::nn::NLLLossOptions{}") NLLLossOptions options_); public NLLLossImpl() { super((Pointer)null); allocate(); } @SharedPtr @Name("std::make_shared") private native void allocate(); /** Pretty prints the {@code NLLLoss} module into the given {@code stream}. */ public native void pretty_print(@Cast("std::ostream*") @ByRef Pointer stream); public native void reset(); public native @ByVal Tensor forward(@Const @ByRef Tensor input, @Const @ByRef Tensor target); /** The options with which this {@code Module} was constructed. */ public native @ByRef NLLLossOptions options(); public native NLLLossImpl options(NLLLossOptions setter); /** A manual rescaling weight given to to each class. */ public native @ByRef Tensor weight(); public native NLLLossImpl weight(Tensor setter); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy