![JAR search and dependency download from the Maven repository](/logo.png)
org.bytedeco.pytorch.NLLLossImpl Maven / Gradle / Ivy
The newest version!
// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE
package org.bytedeco.pytorch;
import org.bytedeco.pytorch.Allocator;
import org.bytedeco.pytorch.Function;
import org.bytedeco.pytorch.Module;
import org.bytedeco.javacpp.annotation.Cast;
import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;
import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.openblas.global.openblas_nolapack.*;
import static org.bytedeco.openblas.global.openblas.*;
import org.bytedeco.javacpp.chrono.*;
import static org.bytedeco.javacpp.global.chrono.*;
import static org.bytedeco.pytorch.global.torch.*;
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ NLLLoss ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/** The negative log likelihood loss. It is useful to train a classification
* problem with {@code C} classes.
* See https://pytorch.org/docs/main/nn.html#torch.nn.NLLLoss to learn
* about the exact behavior of this module.
*
* See the documentation for {@code torch::nn::NLLLossOptions} class to learn what
* constructor arguments are supported for this module.
*
* Example:
* {@code
* NLLLoss model(NLLLossOptions().ignore_index(-100).reduction(torch::kMean));
* }
*/
@Namespace("torch::nn") @NoOffset @Properties(inherit = org.bytedeco.pytorch.presets.torch.class)
public class NLLLossImpl extends NLLLossImplCloneable {
static { Loader.load(); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public NLLLossImpl(Pointer p) { super(p); }
public NLLLossImpl(@ByVal(nullValue = "torch::nn::NLLLossOptions{}") NLLLossOptions options_) { super((Pointer)null); allocate(options_); }
@SharedPtr @Name("std::make_shared") private native void allocate(@ByVal(nullValue = "torch::nn::NLLLossOptions{}") NLLLossOptions options_);
public NLLLossImpl() { super((Pointer)null); allocate(); }
@SharedPtr @Name("std::make_shared") private native void allocate();
/** Pretty prints the {@code NLLLoss} module into the given {@code stream}. */
public native void pretty_print(@Cast("std::ostream*") @ByRef Pointer stream);
public native void reset();
public native @ByVal Tensor forward(@Const @ByRef Tensor input, @Const @ByRef Tensor target);
/** The options with which this {@code Module} was constructed. */
public native @ByRef NLLLossOptions options(); public native NLLLossImpl options(NLLLossOptions setter);
/** A manual rescaling weight given to to each class. */
public native @ByRef Tensor weight(); public native NLLLossImpl weight(Tensor setter);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy