org.bytedeco.tensorflowlite.TfLiteTensor Maven / Gradle / Ivy
// Targeted by JavaCPP version 1.5.7: DO NOT EDIT THIS FILE
package org.bytedeco.tensorflowlite;
import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;
import static org.bytedeco.tensorflowlite.global.tensorflowlite.*;
// A tensor in the interpreter system which is a wrapper around a buffer of
// data including a dimensionality (or NULL if not currently defined).
// #ifndef TF_LITE_STATIC_MEMORY
@Properties(inherit = org.bytedeco.tensorflowlite.presets.tensorflowlite.class)
public class TfLiteTensor extends Pointer {
static { Loader.load(); }
/** Default native constructor. */
public TfLiteTensor() { super((Pointer)null); allocate(); }
/** Native array allocator. Access with {@link Pointer#position(long)}. */
public TfLiteTensor(long size) { super((Pointer)null); allocateArray(size); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public TfLiteTensor(Pointer p) { super(p); }
private native void allocate();
private native void allocateArray(long size);
@Override public TfLiteTensor position(long position) {
return (TfLiteTensor)super.position(position);
}
@Override public TfLiteTensor getPointer(long i) {
return new TfLiteTensor((Pointer)this).offsetAddress(i);
}
// The data type specification for data stored in `data`. This affects
// what member of `data` union should be used.
public native @Cast("TfLiteType") int type(); public native TfLiteTensor type(int setter);
// A union of data pointers. The appropriate type should be used for a typed
// tensor based on `type`.
public native @ByRef TfLitePtrUnion data(); public native TfLiteTensor data(TfLitePtrUnion setter);
// A pointer to a structure representing the dimensionality interpretation
// that the buffer should have. NOTE: the product of elements of `dims`
// and the element datatype size should be equal to `bytes` below.
public native TfLiteIntArray dims(); public native TfLiteTensor dims(TfLiteIntArray setter);
// Quantization information.
public native @ByRef TfLiteQuantizationParams params(); public native TfLiteTensor params(TfLiteQuantizationParams setter);
// How memory is mapped
// kTfLiteMmapRo: Memory mapped read only.
// i.e. weights
// kTfLiteArenaRw: Arena allocated read write memory
// (i.e. temporaries, outputs).
public native @Cast("TfLiteAllocationType") int allocation_type(); public native TfLiteTensor allocation_type(int setter);
// The number of bytes required to store the data of this Tensor. I.e.
// (bytes of each element) * dims[0] * ... * dims[n-1]. For example, if
// type is kTfLiteFloat32 and dims = {3, 2} then
// bytes = sizeof(float) * 3 * 2 = 4 * 3 * 2 = 24.
public native @Cast("size_t") long bytes(); public native TfLiteTensor bytes(long setter);
// An opaque pointer to a tflite::MMapAllocation
public native @Const Pointer allocation(); public native TfLiteTensor allocation(Pointer setter);
// Null-terminated name of this tensor.
public native @Cast("const char*") BytePointer name(); public native TfLiteTensor name(BytePointer setter);
// The delegate which knows how to handle `buffer_handle`.
// WARNING: This is an experimental interface that is subject to change.
public native TfLiteDelegate delegate(); public native TfLiteTensor delegate(TfLiteDelegate setter);
// An integer buffer handle that can be handled by `delegate`.
// The value is valid only when delegate is not null.
// WARNING: This is an experimental interface that is subject to change.
public native @Cast("TfLiteBufferHandle") int buffer_handle(); public native TfLiteTensor buffer_handle(int setter);
// If the delegate uses its own buffer (e.g. GPU memory), the delegate is
// responsible to set data_is_stale to true.
// `delegate->CopyFromBufferHandle` can be called to copy the data from
// delegate buffer.
// WARNING: This is an // experimental interface that is subject to change.
public native @Cast("bool") boolean data_is_stale(); public native TfLiteTensor data_is_stale(boolean setter);
// True if the tensor is a variable.
public native @Cast("bool") boolean is_variable(); public native TfLiteTensor is_variable(boolean setter);
// Quantization information. Replaces params field above.
public native @ByRef TfLiteQuantization quantization(); public native TfLiteTensor quantization(TfLiteQuantization setter);
// Parameters used to encode a sparse tensor.
// This is optional. The field is NULL if a tensor is dense.
// WARNING: This is an experimental interface that is subject to change.
public native TfLiteSparsity sparsity(); public native TfLiteTensor sparsity(TfLiteSparsity setter);
// Optional. Encodes shapes with unknown dimensions with -1. This field is
// only populated when unknown dimensions exist in a read-write tensor (i.e.
// an input or output tensor). (e.g. `dims` contains [1, 1, 1, 3] and
// `dims_signature` contains [1, -1, -1, 3]).
public native @Const TfLiteIntArray dims_signature(); public native TfLiteTensor dims_signature(TfLiteIntArray setter);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy