![JAR search and dependency download from the Maven repository](/logo.png)
org.bytedeco.tensorflow.MaxPoolWithArgmax Maven / Gradle / Ivy
The newest version!
// Targeted by JavaCPP version 1.5.8: DO NOT EDIT THIS FILE
package org.bytedeco.tensorflow;
import org.bytedeco.tensorflow.Allocator;
import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;
import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.tensorflow.global.tensorflow.*;
/** Performs max pooling on the input and outputs both max values and indices.
*
* The indices in {@code argmax} are flattened, so that a maximum value at position
* {@code [b, y, x, c]} becomes flattened index:
* {@code (y * width + x) * channels + c} if {@code include_batch_in_index} is False;
* {@code ((b * height + y) * width + x) * channels + c} if {@code include_batch_in_index} is True.
*
* The indices returned are always in {@code [0, height) x [0, width)} before flattening,
* even if padding is involved and the mathematically correct answer is outside
* (either negative or too large). This is a bug, but fixing it is difficult to do
* in a safe backwards compatible way, especially due to flattening.
*
* Arguments:
* * scope: A Scope object
* * input: 4-D with shape {@code [batch, height, width, channels]}. Input to pool over.
* * ksize: The size of the window for each dimension of the input tensor.
* * strides: The stride of the sliding window for each dimension of the
* input tensor.
* * padding: The type of padding algorithm to use.
*
* Optional attributes (see {@code Attrs}):
* * include_batch_in_index: Whether to include batch dimension in flattened index of {@code argmax}.
*
* Returns:
* * {@code Output} output: The max pooled output tensor.
* * {@code Output} argmax: 4-D. The flattened indices of the max values chosen for each output. */
@Namespace("tensorflow::ops") @NoOffset @Properties(inherit = org.bytedeco.tensorflow.presets.tensorflow.class)
public class MaxPoolWithArgmax extends Pointer {
static { Loader.load(); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public MaxPoolWithArgmax(Pointer p) { super(p); }
/** Optional attribute setters for MaxPoolWithArgmax */
public static class Attrs extends Pointer {
static { Loader.load(); }
/** Default native constructor. */
public Attrs() { super((Pointer)null); allocate(); }
/** Native array allocator. Access with {@link Pointer#position(long)}. */
public Attrs(long size) { super((Pointer)null); allocateArray(size); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public Attrs(Pointer p) { super(p); }
private native void allocate();
private native void allocateArray(long size);
@Override public Attrs position(long position) {
return (Attrs)super.position(position);
}
@Override public Attrs getPointer(long i) {
return new Attrs((Pointer)this).offsetAddress(i);
}
/** Defaults to DT_INT64 */
///
public native @ByVal Attrs Targmax(@Cast("tensorflow::DataType") int x);
/** Whether to include batch dimension in flattened index of {@code argmax}.
*
* Defaults to false */
public native @ByVal Attrs IncludeBatchInIndex(@Cast("bool") boolean x);
public native @Cast("tensorflow::DataType") int Targmax_(); public native Attrs Targmax_(int setter);
public native @Cast("bool") boolean include_batch_in_index_(); public native Attrs include_batch_in_index_(boolean setter);
}
public MaxPoolWithArgmax(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntPointer ksize, @ArraySlice IntPointer strides, @StringPiece BytePointer padding) { super((Pointer)null); allocate(scope, input, ksize, strides, padding); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntPointer ksize, @ArraySlice IntPointer strides, @StringPiece BytePointer padding);
public MaxPoolWithArgmax(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntBuffer ksize, @ArraySlice IntBuffer strides, @StringPiece String padding) { super((Pointer)null); allocate(scope, input, ksize, strides, padding); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntBuffer ksize, @ArraySlice IntBuffer strides, @StringPiece String padding);
public MaxPoolWithArgmax(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice int[] ksize, @ArraySlice int[] strides, @StringPiece BytePointer padding) { super((Pointer)null); allocate(scope, input, ksize, strides, padding); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice int[] ksize, @ArraySlice int[] strides, @StringPiece BytePointer padding);
public MaxPoolWithArgmax(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntPointer ksize, @ArraySlice IntPointer strides, @StringPiece String padding) { super((Pointer)null); allocate(scope, input, ksize, strides, padding); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntPointer ksize, @ArraySlice IntPointer strides, @StringPiece String padding);
public MaxPoolWithArgmax(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntBuffer ksize, @ArraySlice IntBuffer strides, @StringPiece BytePointer padding) { super((Pointer)null); allocate(scope, input, ksize, strides, padding); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntBuffer ksize, @ArraySlice IntBuffer strides, @StringPiece BytePointer padding);
public MaxPoolWithArgmax(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice int[] ksize, @ArraySlice int[] strides, @StringPiece String padding) { super((Pointer)null); allocate(scope, input, ksize, strides, padding); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice int[] ksize, @ArraySlice int[] strides, @StringPiece String padding);
public MaxPoolWithArgmax(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntPointer ksize, @ArraySlice IntPointer strides, @StringPiece BytePointer padding, @Const @ByRef Attrs attrs) { super((Pointer)null); allocate(scope, input, ksize, strides, padding, attrs); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntPointer ksize, @ArraySlice IntPointer strides, @StringPiece BytePointer padding, @Const @ByRef Attrs attrs);
public MaxPoolWithArgmax(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntBuffer ksize, @ArraySlice IntBuffer strides, @StringPiece String padding, @Const @ByRef Attrs attrs) { super((Pointer)null); allocate(scope, input, ksize, strides, padding, attrs); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntBuffer ksize, @ArraySlice IntBuffer strides, @StringPiece String padding, @Const @ByRef Attrs attrs);
public MaxPoolWithArgmax(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice int[] ksize, @ArraySlice int[] strides, @StringPiece BytePointer padding, @Const @ByRef Attrs attrs) { super((Pointer)null); allocate(scope, input, ksize, strides, padding, attrs); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice int[] ksize, @ArraySlice int[] strides, @StringPiece BytePointer padding, @Const @ByRef Attrs attrs);
public MaxPoolWithArgmax(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntPointer ksize, @ArraySlice IntPointer strides, @StringPiece String padding, @Const @ByRef Attrs attrs) { super((Pointer)null); allocate(scope, input, ksize, strides, padding, attrs); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntPointer ksize, @ArraySlice IntPointer strides, @StringPiece String padding, @Const @ByRef Attrs attrs);
public MaxPoolWithArgmax(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntBuffer ksize, @ArraySlice IntBuffer strides, @StringPiece BytePointer padding, @Const @ByRef Attrs attrs) { super((Pointer)null); allocate(scope, input, ksize, strides, padding, attrs); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice IntBuffer ksize, @ArraySlice IntBuffer strides, @StringPiece BytePointer padding, @Const @ByRef Attrs attrs);
public MaxPoolWithArgmax(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice int[] ksize, @ArraySlice int[] strides, @StringPiece String padding, @Const @ByRef Attrs attrs) { super((Pointer)null); allocate(scope, input, ksize, strides, padding, attrs); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input,
@ArraySlice int[] ksize, @ArraySlice int[] strides, @StringPiece String padding, @Const @ByRef Attrs attrs);
public static native @ByVal Attrs Targmax(@Cast("tensorflow::DataType") int x);
public static native @ByVal Attrs IncludeBatchInIndex(@Cast("bool") boolean x);
public native @ByRef Operation operation(); public native MaxPoolWithArgmax operation(Operation setter);
public native @ByRef Output output(); public native MaxPoolWithArgmax output(Output setter);
public native @ByRef Output argmax(); public native MaxPoolWithArgmax argmax(Output setter);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy