org.bytedeco.tensorflow.ResourceSparseApplyFtrl Maven / Gradle / Ivy
The newest version!
// Targeted by JavaCPP version 1.5.8: DO NOT EDIT THIS FILE
package org.bytedeco.tensorflow;
import org.bytedeco.tensorflow.Allocator;
import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;
import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.tensorflow.global.tensorflow.*;
/** Update relevant entries in '*var' according to the Ftrl-proximal scheme.
*
* That is for rows we have grad for, we update var, accum and linear as follows:
* accum_new = accum + grad * grad
* linear += grad - (accum_new^(-lr_power) - accum^(-lr_power)) / lr * var
* quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2
* var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0
* accum = accum_new
*
* Arguments:
* * scope: A Scope object
* * var: Should be from a Variable().
* * accum: Should be from a Variable().
* * linear: Should be from a Variable().
* * grad: The gradient.
* * indices: A vector of indices into the first dimension of var and accum.
* * lr: Scaling factor. Must be a scalar.
* * l1: L1 regularization. Must be a scalar.
* * l2: L2 regularization. Must be a scalar.
* * lr_power: Scaling factor. Must be a scalar.
*
* Optional attributes (see {@code Attrs}):
* * use_locking: If {@code True}, updating of the var and accum tensors will be protected
* by a lock; otherwise the behavior is undefined, but may exhibit less
* contention.
*
* Returns:
* * the created {@code Operation} */
@Namespace("tensorflow::ops") @NoOffset @Properties(inherit = org.bytedeco.tensorflow.presets.tensorflow.class)
public class ResourceSparseApplyFtrl extends Pointer {
static { Loader.load(); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public ResourceSparseApplyFtrl(Pointer p) { super(p); }
/** Optional attribute setters for ResourceSparseApplyFtrl */
public static class Attrs extends Pointer {
static { Loader.load(); }
/** Default native constructor. */
public Attrs() { super((Pointer)null); allocate(); }
/** Native array allocator. Access with {@link Pointer#position(long)}. */
public Attrs(long size) { super((Pointer)null); allocateArray(size); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public Attrs(Pointer p) { super(p); }
private native void allocate();
private native void allocateArray(long size);
@Override public Attrs position(long position) {
return (Attrs)super.position(position);
}
@Override public Attrs getPointer(long i) {
return new Attrs((Pointer)this).offsetAddress(i);
}
/** If {@code True}, updating of the var and accum tensors will be protected
* by a lock; otherwise the behavior is undefined, but may exhibit less
* contention.
*
* Defaults to false */
public native @ByVal Attrs UseLocking(@Cast("bool") boolean x);
public native @Cast("bool") boolean use_locking_(); public native Attrs use_locking_(boolean setter);
}
public ResourceSparseApplyFtrl(@Const @ByRef Scope scope, @ByVal Input var, @ByVal Input accum, @ByVal Input linear, @ByVal Input grad, @ByVal Input indices, @ByVal Input lr, @ByVal Input l1, @ByVal Input l2, @ByVal Input lr_power) { super((Pointer)null); allocate(scope, var, accum, linear, grad, indices, lr, l1, l2, lr_power); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input var, @ByVal Input accum, @ByVal Input linear, @ByVal Input grad, @ByVal Input indices, @ByVal Input lr, @ByVal Input l1, @ByVal Input l2, @ByVal Input lr_power);
public ResourceSparseApplyFtrl(@Const @ByRef Scope scope, @ByVal Input var, @ByVal Input accum, @ByVal Input linear, @ByVal Input grad, @ByVal Input indices, @ByVal Input lr, @ByVal Input l1, @ByVal Input l2, @ByVal Input lr_power, @Const @ByRef Attrs attrs) { super((Pointer)null); allocate(scope, var, accum, linear, grad, indices, lr, l1, l2, lr_power, attrs); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input var, @ByVal Input accum, @ByVal Input linear, @ByVal Input grad, @ByVal Input indices, @ByVal Input lr, @ByVal Input l1, @ByVal Input l2, @ByVal Input lr_power, @Const @ByRef Attrs attrs);
public native @ByVal @Name("operator tensorflow::Operation") Operation asOperation();
public static native @ByVal Attrs UseLocking(@Cast("bool") boolean x);
public native @ByRef Operation operation(); public native ResourceSparseApplyFtrl operation(Operation setter);
}