org.bytedeco.tensorflow.SparseApplyProximalAdagrad Maven / Gradle / Ivy
The newest version!
// Targeted by JavaCPP version 1.5.8: DO NOT EDIT THIS FILE
package org.bytedeco.tensorflow;
import org.bytedeco.tensorflow.Allocator;
import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;
import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.tensorflow.global.tensorflow.*;
/** Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
*
* That is for rows we have grad for, we update var and accum as follows:
* $$accum += grad * grad$$
* $$prox_v = var$$
* $$prox_v -= lr * grad * (1 / sqrt(accum))$$
* $$var = sign(prox_v)/(1+lr*l2) * max{|prox_v|-lr*l1,0}$$
*
* Arguments:
* * scope: A Scope object
* * var: Should be from a Variable().
* * accum: Should be from a Variable().
* * lr: Learning rate. Must be a scalar.
* * l1: L1 regularization. Must be a scalar.
* * l2: L2 regularization. Must be a scalar.
* * grad: The gradient.
* * indices: A vector of indices into the first dimension of var and accum.
*
* Optional attributes (see {@code Attrs}):
* * use_locking: If True, updating of the var and accum tensors will be protected by
* a lock; otherwise the behavior is undefined, but may exhibit less contention.
*
* Returns:
* * {@code Output}: Same as "var". */
@Namespace("tensorflow::ops") @NoOffset @Properties(inherit = org.bytedeco.tensorflow.presets.tensorflow.class)
public class SparseApplyProximalAdagrad extends Pointer {
static { Loader.load(); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public SparseApplyProximalAdagrad(Pointer p) { super(p); }
/** Optional attribute setters for SparseApplyProximalAdagrad */
public static class Attrs extends Pointer {
static { Loader.load(); }
/** Default native constructor. */
public Attrs() { super((Pointer)null); allocate(); }
/** Native array allocator. Access with {@link Pointer#position(long)}. */
public Attrs(long size) { super((Pointer)null); allocateArray(size); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public Attrs(Pointer p) { super(p); }
private native void allocate();
private native void allocateArray(long size);
@Override public Attrs position(long position) {
return (Attrs)super.position(position);
}
@Override public Attrs getPointer(long i) {
return new Attrs((Pointer)this).offsetAddress(i);
}
/** If True, updating of the var and accum tensors will be protected by
* a lock; otherwise the behavior is undefined, but may exhibit less contention.
*
* Defaults to false */
public native @ByVal Attrs UseLocking(@Cast("bool") boolean x);
public native @Cast("bool") boolean use_locking_(); public native Attrs use_locking_(boolean setter);
}
public SparseApplyProximalAdagrad(@Const @ByRef Scope scope,
@ByVal Input var, @ByVal Input accum,
@ByVal Input lr, @ByVal Input l1,
@ByVal Input l2, @ByVal Input grad,
@ByVal Input indices) { super((Pointer)null); allocate(scope, var, accum, lr, l1, l2, grad, indices); }
private native void allocate(@Const @ByRef Scope scope,
@ByVal Input var, @ByVal Input accum,
@ByVal Input lr, @ByVal Input l1,
@ByVal Input l2, @ByVal Input grad,
@ByVal Input indices);
public SparseApplyProximalAdagrad(@Const @ByRef Scope scope,
@ByVal Input var, @ByVal Input accum,
@ByVal Input lr, @ByVal Input l1,
@ByVal Input l2, @ByVal Input grad,
@ByVal Input indices, @Const @ByRef Attrs attrs) { super((Pointer)null); allocate(scope, var, accum, lr, l1, l2, grad, indices, attrs); }
private native void allocate(@Const @ByRef Scope scope,
@ByVal Input var, @ByVal Input accum,
@ByVal Input lr, @ByVal Input l1,
@ByVal Input l2, @ByVal Input grad,
@ByVal Input indices, @Const @ByRef Attrs attrs);
public native @ByVal @Name("operator tensorflow::Output") Output asOutput();
public native @ByVal @Name("operator tensorflow::Input") Input asInput();
public native Node node();
public static native @ByVal Attrs UseLocking(@Cast("bool") boolean x);
public native @ByRef Operation operation(); public native SparseApplyProximalAdagrad operation(Operation setter);
public native @ByRef Output out(); public native SparseApplyProximalAdagrad out(Output setter);
}