org.bytedeco.tensorflow.SparseReduceMax Maven / Gradle / Ivy
The newest version!
// Targeted by JavaCPP version 1.5.8: DO NOT EDIT THIS FILE
package org.bytedeco.tensorflow;
import org.bytedeco.tensorflow.Allocator;
import java.nio.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.annotation.*;
import static org.bytedeco.javacpp.presets.javacpp.*;
import static org.bytedeco.tensorflow.global.tensorflow.*;
/** Computes the max of elements across dimensions of a SparseTensor.
*
* This Op takes a SparseTensor and is the sparse counterpart to
* {@code tf.reduce_max()}. In particular, this Op also returns a dense {@code Tensor}
* instead of a sparse one.
*
* Reduces {@code sp_input} along the dimensions given in {@code reduction_axes}. Unless
* {@code keep_dims} is true, the rank of the tensor is reduced by 1 for each entry in
* {@code reduction_axes}. If {@code keep_dims} is true, the reduced dimensions are retained
* with length 1.
*
* If {@code reduction_axes} has no entries, all dimensions are reduced, and a tensor
* with a single element is returned. Additionally, the axes can be negative,
* which are interpreted according to the indexing rules in Python.
*
* Arguments:
* * scope: A Scope object
* * input_indices: 2-D. {@code N x R} matrix with the indices of non-empty values in a
* SparseTensor, possibly not in canonical ordering.
* * input_values: 1-D. {@code N} non-empty values corresponding to {@code input_indices}.
* * input_shape: 1-D. Shape of the input SparseTensor.
* * reduction_axes: 1-D. Length-{@code K} vector containing the reduction axes.
*
* Optional attributes (see {@code Attrs}):
* * keep_dims: If true, retain reduced dimensions with length 1.
*
* Returns:
* * {@code Output}: {@code R-K}-D. The reduced Tensor. */
@Namespace("tensorflow::ops") @NoOffset @Properties(inherit = org.bytedeco.tensorflow.presets.tensorflow.class)
public class SparseReduceMax extends Pointer {
static { Loader.load(); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public SparseReduceMax(Pointer p) { super(p); }
/** Optional attribute setters for SparseReduceMax */
public static class Attrs extends Pointer {
static { Loader.load(); }
/** Default native constructor. */
public Attrs() { super((Pointer)null); allocate(); }
/** Native array allocator. Access with {@link Pointer#position(long)}. */
public Attrs(long size) { super((Pointer)null); allocateArray(size); }
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
public Attrs(Pointer p) { super(p); }
private native void allocate();
private native void allocateArray(long size);
@Override public Attrs position(long position) {
return (Attrs)super.position(position);
}
@Override public Attrs getPointer(long i) {
return new Attrs((Pointer)this).offsetAddress(i);
}
/** If true, retain reduced dimensions with length 1.
*
* Defaults to false */
public native @ByVal Attrs KeepDims(@Cast("bool") boolean x);
public native @Cast("bool") boolean keep_dims_(); public native Attrs keep_dims_(boolean setter);
}
public SparseReduceMax(@Const @ByRef Scope scope, @ByVal Input input_indices, @ByVal Input input_values,
@ByVal Input input_shape, @ByVal Input reduction_axes) { super((Pointer)null); allocate(scope, input_indices, input_values, input_shape, reduction_axes); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input_indices, @ByVal Input input_values,
@ByVal Input input_shape, @ByVal Input reduction_axes);
public SparseReduceMax(@Const @ByRef Scope scope, @ByVal Input input_indices, @ByVal Input input_values,
@ByVal Input input_shape, @ByVal Input reduction_axes, @Const @ByRef Attrs attrs) { super((Pointer)null); allocate(scope, input_indices, input_values, input_shape, reduction_axes, attrs); }
private native void allocate(@Const @ByRef Scope scope, @ByVal Input input_indices, @ByVal Input input_values,
@ByVal Input input_shape, @ByVal Input reduction_axes, @Const @ByRef Attrs attrs);
public native @ByVal @Name("operator tensorflow::Output") Output asOutput();
public native @ByVal @Name("operator tensorflow::Input") Input asInput();
public native Node node();
public static native @ByVal Attrs KeepDims(@Cast("bool") boolean x);
public native @ByRef Operation operation(); public native SparseReduceMax operation(Operation setter);
public native @ByRef Output output(); public native SparseReduceMax output(Output setter);
}