All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.tensorflow.op.data.ExperimentalUniqueDataset Maven / Gradle / Ivy

The newest version!
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
=======================================================================*/

// This class has been generated, DO NOT EDIT!

package org.tensorflow.op.data;

import java.util.List;
import org.tensorflow.DataType;
import org.tensorflow.Operand;
import org.tensorflow.Operation;
import org.tensorflow.OperationBuilder;
import org.tensorflow.Output;
import org.tensorflow.Shape;
import org.tensorflow.op.PrimitiveOp;
import org.tensorflow.op.Scope;

/**
 * Creates a dataset that contains the unique elements of `input_dataset`.
 */
public final class ExperimentalUniqueDataset extends PrimitiveOp implements Operand {
  
  /**
   * Factory method to create a class wrapping a new ExperimentalUniqueDataset operation.
   * 
   * @param scope current scope
   * @param inputDataset 
   * @param outputTypes 
   * @param outputShapes 
   * @return a new instance of ExperimentalUniqueDataset
   */
  public static ExperimentalUniqueDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) {
    OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalUniqueDataset", scope.makeOpName("ExperimentalUniqueDataset"));
    opBuilder.addInput(inputDataset.asOutput());
    opBuilder = scope.applyControlDependencies(opBuilder);
    DataType[] outputTypesArray = new DataType[outputTypes.size()];
    for (int i = 0; i < outputTypesArray.length; ++i) {
      outputTypesArray[i] = DataType.fromClass(outputTypes.get(i));
    }
    opBuilder.setAttr("output_types", outputTypesArray);
    Shape[] outputShapesArray = new Shape[outputShapes.size()];
    for (int i = 0; i < outputShapesArray.length; ++i) {
      outputShapesArray[i] = outputShapes.get(i);
    }
    opBuilder.setAttr("output_shapes", outputShapesArray);
    return new ExperimentalUniqueDataset(opBuilder.build());
  }
  
  /**
   */
  public Output handle() {
    return handle;
  }
  
  @Override
  @SuppressWarnings("unchecked")
  public Output asOutput() {
    return (Output) handle;
  }
  
  private Output handle;
  
  private ExperimentalUniqueDataset(Operation operation) {
    super(operation);
    int outputIdx = 0;
    handle = operation.output(outputIdx++);
  }
}