org.tensorflow.op.nn.Dilation2d Maven / Gradle / Ivy
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
=======================================================================*/
// This class has been generated, DO NOT EDIT!
package org.tensorflow.op.nn;
import java.util.List;
import org.tensorflow.Operand;
import org.tensorflow.Operation;
import org.tensorflow.OperationBuilder;
import org.tensorflow.Output;
import org.tensorflow.op.PrimitiveOp;
import org.tensorflow.op.Scope;
import org.tensorflow.op.annotation.Operator;
/**
* Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors.
*
* The `input` tensor has shape `[batch, in_height, in_width, depth]` and the
* `filter` tensor has shape `[filter_height, filter_width, depth]`, i.e., each
* input channel is processed independently of the others with its own structuring
* function. The `output` tensor has shape
* `[batch, out_height, out_width, depth]`. The spatial dimensions of the output
* tensor depend on the `padding` algorithm. We currently only support the default
* "NHWC" `data_format`.
*
* In detail, the grayscale morphological 2-D dilation is the max-sum correlation
* (for consistency with `conv2d`, we use unmirrored filters):
*
* output[b, y, x, c] =
* max_{dy, dx} input[b,
* strides[1] * y + rates[1] * dy,
* strides[2] * x + rates[2] * dx,
* c] +
* filter[dy, dx, c]
*
* Max-pooling is a special case when the filter has size equal to the pooling
* kernel size and contains all zeros.
*
* Note on duality: The dilation of `input` by the `filter` is equal to the
* negation of the erosion of `-input` by the reflected `filter`.
*
* @param data type for {@code output()} output
*/
@Operator(group = "nn")
public final class Dilation2d extends PrimitiveOp implements Operand {
/**
* Factory method to create a class wrapping a new Dilation2d operation.
*
* @param scope current scope
* @param input 4-D with shape `[batch, in_height, in_width, depth]`.
* @param filter 3-D with shape `[filter_height, filter_width, depth]`.
* @param strides The stride of the sliding window for each dimension of the input
* tensor. Must be: `[1, stride_height, stride_width, 1]`.
* @param rates The input stride for atrous morphological dilation. Must be:
* `[1, rate_height, rate_width, 1]`.
* @param padding The type of padding algorithm to use.
* @return a new instance of Dilation2d
*/
public static Dilation2d create(Scope scope, Operand input, Operand filter, List strides, List rates, String padding) {
OperationBuilder opBuilder = scope.env().opBuilder("Dilation2D", scope.makeOpName("Dilation2d"));
opBuilder.addInput(input.asOutput());
opBuilder.addInput(filter.asOutput());
opBuilder = scope.applyControlDependencies(opBuilder);
long[] stridesArray = new long[strides.size()];
for (int i = 0; i < stridesArray.length; ++i) {
stridesArray[i] = strides.get(i);
}
opBuilder.setAttr("strides", stridesArray);
long[] ratesArray = new long[rates.size()];
for (int i = 0; i < ratesArray.length; ++i) {
ratesArray[i] = rates.get(i);
}
opBuilder.setAttr("rates", ratesArray);
opBuilder.setAttr("padding", padding);
return new Dilation2d(opBuilder.build());
}
/**
* 4-D with shape `[batch, out_height, out_width, depth]`.
*/
public Output output() {
return output;
}
@Override
public Output asOutput() {
return output;
}
private Output output;
private Dilation2d(Operation operation) {
super(operation);
int outputIdx = 0;
output = operation.output(outputIdx++);
}
}