keycloakjar.org.springframework.asm.Opcodes Maven / Gradle / Ivy
Show all versions of camunda-bpm-identity-keycloak-all Show documentation
// ASM: a very small and fast Java bytecode manipulation framework
// Copyright (c) 2000-2011 INRIA, France Telecom
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. Neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE.
package org.springframework.asm;
/**
* The JVM opcodes, access flags and array type codes. This interface does not define all the JVM
* opcodes because some opcodes are automatically handled. For example, the xLOAD and xSTORE opcodes
* are automatically replaced by xLOAD_n and xSTORE_n opcodes when possible. The xLOAD_n and
* xSTORE_n opcodes are therefore not defined in this interface. Likewise for LDC, automatically
* replaced by LDC_W or LDC2_W when necessary, WIDE, GOTO_W and JSR_W.
*
* @see JVMS 6
* @author Eric Bruneton
* @author Eugene Kuleshov
*/
// DontCheck(InterfaceIsType): can't be fixed (for backward binary compatibility).
public interface Opcodes {
// ASM API versions.
int ASM4 = 4 << 16 | 0 << 8;
int ASM5 = 5 << 16 | 0 << 8;
int ASM6 = 6 << 16 | 0 << 8;
int ASM7 = 7 << 16 | 0 << 8;
/*
* Internal flags used to redirect calls to deprecated methods. For instance, if a visitOldStuff
* method in API_OLD is deprecated and replaced with visitNewStuff in API_NEW, then the
* redirection should be done as follows:
*
*
* public class StuffVisitor {
* ...
*
* @Deprecated public void visitOldStuff(int arg, ...) {
* // SOURCE_DEPRECATED means "a call from a deprecated method using the old 'api' value".
* visitNewStuf(arg | (api < API_NEW ? SOURCE_DEPRECATED : 0), ...);
* }
*
* public void visitNewStuff(int argAndSource, ...) {
* if (api < API_NEW && (argAndSource & SOURCE_DEPRECATED) == 0) {
* visitOldStuff(argAndSource, ...);
* } else {
* int arg = argAndSource & ~SOURCE_MASK;
* [ do stuff ]
* }
* }
* }
*
*
* If 'api' is equal to API_NEW, there are two cases:
*
*
* - call visitNewStuff: the redirection test is skipped and 'do stuff' is executed directly.
*
- call visitOldSuff: the source is not set to SOURCE_DEPRECATED before calling
* visitNewStuff, but the redirection test is skipped anyway in visitNewStuff, which
* directly executes 'do stuff'.
*
*
* If 'api' is equal to API_OLD, there are two cases:
*
*
* - call visitOldSuff: the source is set to SOURCE_DEPRECATED before calling visitNewStuff.
* Because of this visitNewStuff does not redirect back to visitOldStuff, and instead
* executes 'do stuff'.
*
- call visitNewStuff: the call is redirected to visitOldStuff because the source is 0.
* visitOldStuff now sets the source to SOURCE_DEPRECATED and calls visitNewStuff back. This
* time visitNewStuff does not redirect the call, and instead executes 'do stuff'.
*
*
* User subclasses
*
* If a user subclass overrides one of these methods, there are only two cases: either 'api' is
* API_OLD and visitOldStuff is overridden (and visitNewStuff is not), or 'api' is API_NEW or
* more, and visitNewStuff is overridden (and visitOldStuff is not). Any other case is a user
* programming error.
*
*
If 'api' is equal to API_NEW, the class hierarchy is equivalent to
*
*
* public class StuffVisitor {
* @Deprecated public void visitOldStuff(int arg, ...) { visitNewStuf(arg, ...); }
* public void visitNewStuff(int arg, ...) { [ do stuff ] }
* }
* class UserStuffVisitor extends StuffVisitor {
* @Override public void visitNewStuff(int arg, ...) {
* super.visitNewStuff(int arg, ...); // optional
* [ do user stuff ]
* }
* }
*
*
* It is then obvious that whether visitNewStuff or visitOldStuff is called, 'do stuff' and 'do
* user stuff' will be executed, in this order.
*
*
If 'api' is equal to API_OLD, the class hierarchy is equivalent to
*
*
* public class StuffVisitor {
* @Deprecated public void visitOldStuff(int arg, ...) {
* visitNewStuf(arg | SOURCE_DEPRECATED, ...);
* }
* public void visitNewStuff(int argAndSource...) {
* if ((argAndSource & SOURCE_DEPRECATED) == 0) {
* visitOldStuff(argAndSource, ...);
* } else {
* int arg = argAndSource & ~SOURCE_MASK;
* [ do stuff ]
* }
* }
* }
* class UserStuffVisitor extends StuffVisitor {
* @Override public void visitOldStuff(int arg, ...) {
* super.visitOldStuff(int arg, ...); // optional
* [ do user stuff ]
* }
* }
*
*
* and there are two cases:
*
*
* - call visitOldSuff: in the call to super.visitOldStuff, the source is set to
* SOURCE_DEPRECATED and visitNewStuff is called. Here 'do stuff' is run because the source
* was previously set to SOURCE_DEPRECATED, and execution eventually returns to
* UserStuffVisitor.visitOldStuff, where 'do user stuff' is run.
*
- call visitNewStuff: the call is redirected to UserStuffVisitor.visitOldStuff because the
* source is 0. Execution continues as in the previous case, resulting in 'do stuff' and 'do
* user stuff' being executed, in this order.
*
*
* ASM subclasses
*
* In ASM packages, subclasses of StuffVisitor can typically be sub classed again by the user,
* and can be used with API_OLD or API_NEW. Because of this, if such a subclass must override
* visitNewStuff, it must do so in the following way (and must not override visitOldStuff):
*
*
* public class AsmStuffVisitor extends StuffVisitor {
* @Override public void visitNewStuff(int argAndSource, ...) {
* if (api < API_NEW && (argAndSource & SOURCE_DEPRECATED) == 0) {
* super.visitNewStuff(argAndSource, ...);
* return;
* }
* super.visitNewStuff(argAndSource, ...); // optional
* int arg = argAndSource & ~SOURCE_MASK;
* [ do other stuff ]
* }
* }
*
*
* If a user class extends this with 'api' equal to API_NEW, the class hierarchy is equivalent
* to
*
*
* public class StuffVisitor {
* @Deprecated public void visitOldStuff(int arg, ...) { visitNewStuf(arg, ...); }
* public void visitNewStuff(int arg, ...) { [ do stuff ] }
* }
* public class AsmStuffVisitor extends StuffVisitor {
* @Override public void visitNewStuff(int arg, ...) {
* super.visitNewStuff(arg, ...);
* [ do other stuff ]
* }
* }
* class UserStuffVisitor extends StuffVisitor {
* @Override public void visitNewStuff(int arg, ...) {
* super.visitNewStuff(int arg, ...);
* [ do user stuff ]
* }
* }
*
*
* It is then obvious that whether visitNewStuff or visitOldStuff is called, 'do stuff', 'do
* other stuff' and 'do user stuff' will be executed, in this order. If, on the other hand, a user
* class extends AsmStuffVisitor with 'api' equal to API_OLD, the class hierarchy is equivalent to
*
*
* public class StuffVisitor {
* @Deprecated public void visitOldStuff(int arg, ...) {
* visitNewStuf(arg | SOURCE_DEPRECATED, ...);
* }
* public void visitNewStuff(int argAndSource, ...) {
* if ((argAndSource & SOURCE_DEPRECATED) == 0) {
* visitOldStuff(argAndSource, ...);
* } else {
* int arg = argAndSource & ~SOURCE_MASK;
* [ do stuff ]
* }
* }
* }
* public class AsmStuffVisitor extends StuffVisitor {
* @Override public void visitNewStuff(int argAndSource, ...) {
* if ((argAndSource & SOURCE_DEPRECATED) == 0) {
* super.visitNewStuff(argAndSource, ...);
* return;
* }
* super.visitNewStuff(argAndSource, ...); // optional
* int arg = argAndSource & ~SOURCE_MASK;
* [ do other stuff ]
* }
* }
* class UserStuffVisitor extends StuffVisitor {
* @Override public void visitOldStuff(int arg, ...) {
* super.visitOldStuff(arg, ...);
* [ do user stuff ]
* }
* }
*
*
* and, here again, whether visitNewStuff or visitOldStuff is called, 'do stuff', 'do other
* stuff' and 'do user stuff' will be executed, in this order (exercise left to the reader).
*
*
Notes
*
*
* - the SOURCE_DEPRECATED flag is set only if 'api' is API_OLD, just before calling
* visitNewStuff. By hypothesis, this method is not overridden by the user. Therefore, user
* classes can never see this flag. Only ASM subclasses must take care of extracting the
* actual argument value by clearing the source flags.
*
- because the SOURCE_DEPRECATED flag is immediately cleared in the caller, the caller can
* call visitOldStuff or visitNewStuff (in 'do stuff' and 'do user stuff') on a delegate
* visitor without any risks (breaking the redirection logic, "leaking" the flag, etc).
*
- all the scenarios discussed above are unit tested in MethodVisitorTest.
*
*/
int SOURCE_DEPRECATED = 0x100;
int SOURCE_MASK = SOURCE_DEPRECATED;
// Java ClassFile versions (the minor version is stored in the 16 most significant bits, and the
// major version in the 16 least significant bits).
int V1_1 = 3 << 16 | 45;
int V1_2 = 0 << 16 | 46;
int V1_3 = 0 << 16 | 47;
int V1_4 = 0 << 16 | 48;
int V1_5 = 0 << 16 | 49;
int V1_6 = 0 << 16 | 50;
int V1_7 = 0 << 16 | 51;
int V1_8 = 0 << 16 | 52;
int V9 = 0 << 16 | 53;
int V10 = 0 << 16 | 54;
int V11 = 0 << 16 | 55;
int V12 = 0 << 16 | 56;
int V13 = 0 << 16 | 57;
int V14 = 0 << 16 | 58;
/**
* Version flag indicating that the class is using 'preview' features.
*
* {@code version & V_PREVIEW == V_PREVIEW} tests if a version is flagged with {@code
* V_PREVIEW}.
*/
int V_PREVIEW = 0xFFFF0000;
// Access flags values, defined in
// - https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-4.html#jvms-4.1-200-E.1
// - https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-4.html#jvms-4.5-200-A.1
// - https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-4.html#jvms-4.6-200-A.1
// - https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-4.html#jvms-4.7.25
int ACC_PUBLIC = 0x0001; // class, field, method
int ACC_PRIVATE = 0x0002; // class, field, method
int ACC_PROTECTED = 0x0004; // class, field, method
int ACC_STATIC = 0x0008; // field, method
int ACC_FINAL = 0x0010; // class, field, method, parameter
int ACC_SUPER = 0x0020; // class
int ACC_SYNCHRONIZED = 0x0020; // method
int ACC_OPEN = 0x0020; // module
int ACC_TRANSITIVE = 0x0020; // module requires
int ACC_VOLATILE = 0x0040; // field
int ACC_BRIDGE = 0x0040; // method
int ACC_STATIC_PHASE = 0x0040; // module requires
int ACC_VARARGS = 0x0080; // method
int ACC_TRANSIENT = 0x0080; // field
int ACC_NATIVE = 0x0100; // method
int ACC_INTERFACE = 0x0200; // class
int ACC_ABSTRACT = 0x0400; // class, method
int ACC_STRICT = 0x0800; // method
int ACC_SYNTHETIC = 0x1000; // class, field, method, parameter, module *
int ACC_ANNOTATION = 0x2000; // class
int ACC_ENUM = 0x4000; // class(?) field inner
int ACC_MANDATED = 0x8000; // parameter, module, module *
int ACC_MODULE = 0x8000; // class
// ASM specific access flags.
// WARNING: the 16 least significant bits must NOT be used, to avoid conflicts with standard
// access flags, and also to make sure that these flags are automatically filtered out when
// written in class files (because access flags are stored using 16 bits only).
int ACC_DEPRECATED = 0x20000; // class, field, method
// Possible values for the type operand of the NEWARRAY instruction.
// See https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-6.html#jvms-6.5.newarray.
int T_BOOLEAN = 4;
int T_CHAR = 5;
int T_FLOAT = 6;
int T_DOUBLE = 7;
int T_BYTE = 8;
int T_SHORT = 9;
int T_INT = 10;
int T_LONG = 11;
// Possible values for the reference_kind field of CONSTANT_MethodHandle_info structures.
// See https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-4.html#jvms-4.4.8.
int H_GETFIELD = 1;
int H_GETSTATIC = 2;
int H_PUTFIELD = 3;
int H_PUTSTATIC = 4;
int H_INVOKEVIRTUAL = 5;
int H_INVOKESTATIC = 6;
int H_INVOKESPECIAL = 7;
int H_NEWINVOKESPECIAL = 8;
int H_INVOKEINTERFACE = 9;
// ASM specific stack map frame types, used in {@link ClassVisitor#visitFrame}.
/** An expanded frame. See {@link ClassReader#EXPAND_FRAMES}. */
int F_NEW = -1;
/** A compressed frame with complete frame data. */
int F_FULL = 0;
/**
* A compressed frame where locals are the same as the locals in the previous frame, except that
* additional 1-3 locals are defined, and with an empty stack.
*/
int F_APPEND = 1;
/**
* A compressed frame where locals are the same as the locals in the previous frame, except that
* the last 1-3 locals are absent and with an empty stack.
*/
int F_CHOP = 2;
/**
* A compressed frame with exactly the same locals as the previous frame and with an empty stack.
*/
int F_SAME = 3;
/**
* A compressed frame with exactly the same locals as the previous frame and with a single value
* on the stack.
*/
int F_SAME1 = 4;
// Standard stack map frame element types, used in {@link ClassVisitor#visitFrame}.
Integer TOP = Frame.ITEM_TOP;
Integer INTEGER = Frame.ITEM_INTEGER;
Integer FLOAT = Frame.ITEM_FLOAT;
Integer DOUBLE = Frame.ITEM_DOUBLE;
Integer LONG = Frame.ITEM_LONG;
Integer NULL = Frame.ITEM_NULL;
Integer UNINITIALIZED_THIS = Frame.ITEM_UNINITIALIZED_THIS;
// The JVM opcode values (with the MethodVisitor method name used to visit them in comment, and
// where '-' means 'same method name as on the previous line').
// See https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-6.html.
int NOP = 0; // visitInsn
int ACONST_NULL = 1; // -
int ICONST_M1 = 2; // -
int ICONST_0 = 3; // -
int ICONST_1 = 4; // -
int ICONST_2 = 5; // -
int ICONST_3 = 6; // -
int ICONST_4 = 7; // -
int ICONST_5 = 8; // -
int LCONST_0 = 9; // -
int LCONST_1 = 10; // -
int FCONST_0 = 11; // -
int FCONST_1 = 12; // -
int FCONST_2 = 13; // -
int DCONST_0 = 14; // -
int DCONST_1 = 15; // -
int BIPUSH = 16; // visitIntInsn
int SIPUSH = 17; // -
int LDC = 18; // visitLdcInsn
int ILOAD = 21; // visitVarInsn
int LLOAD = 22; // -
int FLOAD = 23; // -
int DLOAD = 24; // -
int ALOAD = 25; // -
int IALOAD = 46; // visitInsn
int LALOAD = 47; // -
int FALOAD = 48; // -
int DALOAD = 49; // -
int AALOAD = 50; // -
int BALOAD = 51; // -
int CALOAD = 52; // -
int SALOAD = 53; // -
int ISTORE = 54; // visitVarInsn
int LSTORE = 55; // -
int FSTORE = 56; // -
int DSTORE = 57; // -
int ASTORE = 58; // -
int IASTORE = 79; // visitInsn
int LASTORE = 80; // -
int FASTORE = 81; // -
int DASTORE = 82; // -
int AASTORE = 83; // -
int BASTORE = 84; // -
int CASTORE = 85; // -
int SASTORE = 86; // -
int POP = 87; // -
int POP2 = 88; // -
int DUP = 89; // -
int DUP_X1 = 90; // -
int DUP_X2 = 91; // -
int DUP2 = 92; // -
int DUP2_X1 = 93; // -
int DUP2_X2 = 94; // -
int SWAP = 95; // -
int IADD = 96; // -
int LADD = 97; // -
int FADD = 98; // -
int DADD = 99; // -
int ISUB = 100; // -
int LSUB = 101; // -
int FSUB = 102; // -
int DSUB = 103; // -
int IMUL = 104; // -
int LMUL = 105; // -
int FMUL = 106; // -
int DMUL = 107; // -
int IDIV = 108; // -
int LDIV = 109; // -
int FDIV = 110; // -
int DDIV = 111; // -
int IREM = 112; // -
int LREM = 113; // -
int FREM = 114; // -
int DREM = 115; // -
int INEG = 116; // -
int LNEG = 117; // -
int FNEG = 118; // -
int DNEG = 119; // -
int ISHL = 120; // -
int LSHL = 121; // -
int ISHR = 122; // -
int LSHR = 123; // -
int IUSHR = 124; // -
int LUSHR = 125; // -
int IAND = 126; // -
int LAND = 127; // -
int IOR = 128; // -
int LOR = 129; // -
int IXOR = 130; // -
int LXOR = 131; // -
int IINC = 132; // visitIincInsn
int I2L = 133; // visitInsn
int I2F = 134; // -
int I2D = 135; // -
int L2I = 136; // -
int L2F = 137; // -
int L2D = 138; // -
int F2I = 139; // -
int F2L = 140; // -
int F2D = 141; // -
int D2I = 142; // -
int D2L = 143; // -
int D2F = 144; // -
int I2B = 145; // -
int I2C = 146; // -
int I2S = 147; // -
int LCMP = 148; // -
int FCMPL = 149; // -
int FCMPG = 150; // -
int DCMPL = 151; // -
int DCMPG = 152; // -
int IFEQ = 153; // visitJumpInsn
int IFNE = 154; // -
int IFLT = 155; // -
int IFGE = 156; // -
int IFGT = 157; // -
int IFLE = 158; // -
int IF_ICMPEQ = 159; // -
int IF_ICMPNE = 160; // -
int IF_ICMPLT = 161; // -
int IF_ICMPGE = 162; // -
int IF_ICMPGT = 163; // -
int IF_ICMPLE = 164; // -
int IF_ACMPEQ = 165; // -
int IF_ACMPNE = 166; // -
int GOTO = 167; // -
int JSR = 168; // -
int RET = 169; // visitVarInsn
int TABLESWITCH = 170; // visiTableSwitchInsn
int LOOKUPSWITCH = 171; // visitLookupSwitch
int IRETURN = 172; // visitInsn
int LRETURN = 173; // -
int FRETURN = 174; // -
int DRETURN = 175; // -
int ARETURN = 176; // -
int RETURN = 177; // -
int GETSTATIC = 178; // visitFieldInsn
int PUTSTATIC = 179; // -
int GETFIELD = 180; // -
int PUTFIELD = 181; // -
int INVOKEVIRTUAL = 182; // visitMethodInsn
int INVOKESPECIAL = 183; // -
int INVOKESTATIC = 184; // -
int INVOKEINTERFACE = 185; // -
int INVOKEDYNAMIC = 186; // visitInvokeDynamicInsn
int NEW = 187; // visitTypeInsn
int NEWARRAY = 188; // visitIntInsn
int ANEWARRAY = 189; // visitTypeInsn
int ARRAYLENGTH = 190; // visitInsn
int ATHROW = 191; // -
int CHECKCAST = 192; // visitTypeInsn
int INSTANCEOF = 193; // -
int MONITORENTER = 194; // visitInsn
int MONITOREXIT = 195; // -
int MULTIANEWARRAY = 197; // visitMultiANewArrayInsn
int IFNULL = 198; // visitJumpInsn
int IFNONNULL = 199; // -
}