org.carrot2.matrix.factorization.IterationNumberGuesser Maven / Gradle / Ivy
/*
* Carrot2 project.
*
* Copyright (C) 2002-2016, Dawid Weiss, Stanisław Osiński.
* All rights reserved.
*
* Refer to the full license file "carrot2.LICENSE"
* in the root folder of the repository checkout or at:
* http://www.carrot2.org/carrot2.LICENSE
*/
package org.carrot2.matrix.factorization;
import java.util.*;
import org.apache.commons.lang.StringUtils;
import org.carrot2.mahout.math.matrix.*;
import org.carrot2.matrix.factorization.seeding.KMeansSeedingStrategyFactory;
import org.carrot2.matrix.factorization.seeding.RandomSeedingStrategyFactory;
import org.carrot2.shaded.guava.common.collect.Maps;
/**
* This class helps to guesstimate the number of iterations for iterative factorization
* algorithms. Note: for the time being it uses a very simple linear model with lots of
* dodgy assumptions.
*/
public class IterationNumberGuesser
{
/**
* Factorization quality.
*/
public enum FactorizationQuality
{
/** Low, quick processing */
LOW,
/** Medium, longer processing */
MEDIUM,
/** High, long processing */
HIGH;
@Override
public String toString()
{
return StringUtils.capitalize(name().toLowerCase());
}
}
/** Coefficients for all known combinations of input parameters */
private static Map, double []> allKnownCoefficients;
static
{
allKnownCoefficients = Maps.newHashMap();
/** NMF-ED, Random seeding, level 1 */
allKnownCoefficients.put(Arrays.asList(new Object []
{
NonnegativeMatrixFactorizationEDFactory.class,
RandomSeedingStrategyFactory.class, FactorizationQuality.LOW
}), new double []
{
-0.0166, 0.3333, 8.0000
});
/** NMF-ED, Random seeding, level 2 */
allKnownCoefficients.put(Arrays.asList(new Object []
{
NonnegativeMatrixFactorizationEDFactory.class,
RandomSeedingStrategyFactory.class, FactorizationQuality.MEDIUM
}), new double []
{
-0.0175, 0.6, 12.0
});
/** NMF-ED, Random seeding, level 3 */
allKnownCoefficients.put(Arrays.asList(new Object []
{
NonnegativeMatrixFactorizationEDFactory.class,
RandomSeedingStrategyFactory.class, FactorizationQuality.HIGH
}), new double []
{
-0.0186, 0.8222, 17.3555
});
/** NMF-KL, Random seeding, level 1 */
allKnownCoefficients.put(Arrays.asList(new Object []
{
NonnegativeMatrixFactorizationKLFactory.class,
RandomSeedingStrategyFactory.class, FactorizationQuality.LOW
}), new double []
{
-0.0166, 0.3333, 8.0000
});
/** NMF-KL, Random seeding, level 2 */
allKnownCoefficients.put(Arrays.asList(new Object []
{
NonnegativeMatrixFactorizationKLFactory.class,
RandomSeedingStrategyFactory.class, FactorizationQuality.MEDIUM
}), new double []
{
-0.0175, 0.6, 12.0
});
/** NMF-KL, Random seeding, level 3 */
allKnownCoefficients.put(Arrays.asList(new Object []
{
NonnegativeMatrixFactorizationKLFactory.class,
RandomSeedingStrategyFactory.class, FactorizationQuality.HIGH
}), new double []
{
-0.0186, 0.8222, 17.3555
});
/** NMF-ED, KMeans seeding, level 1 */
allKnownCoefficients.put(Arrays.asList(new Object []
{
NonnegativeMatrixFactorizationEDFactory.class,
KMeansSeedingStrategyFactory.class, FactorizationQuality.LOW
}), new double []
{
-0.005, 0, 6
});
/** NMF-ED, KMeans seeding, level 2 */
allKnownCoefficients.put(Arrays.asList(new Object []
{
NonnegativeMatrixFactorizationEDFactory.class,
KMeansSeedingStrategyFactory.class, FactorizationQuality.MEDIUM
}), new double []
{
-0.005, 0, 10
});
/** NMF-ED, KMeans seeding, level 3 */
allKnownCoefficients.put(Arrays.asList(new Object []
{
NonnegativeMatrixFactorizationEDFactory.class,
KMeansSeedingStrategyFactory.class, FactorizationQuality.HIGH
}), new double []
{
-0.005, 0, 20
});
/** LNMF, Random seeding, level 1 */
allKnownCoefficients.put(Arrays.asList(new Object []
{
LocalNonnegativeMatrixFactorizationFactory.class,
RandomSeedingStrategyFactory.class, FactorizationQuality.LOW
}), new double []
{
-0.014, 0.1, 7.5
});
/** LNMF, Random seeding, level 2 */
allKnownCoefficients.put(Arrays.asList(new Object []
{
LocalNonnegativeMatrixFactorizationFactory.class,
RandomSeedingStrategyFactory.class, FactorizationQuality.MEDIUM
}), new double []
{
-0.0175, 0.15, 11.3333
});
/** LNMF, Random seeding, level 3 */
allKnownCoefficients.put(Arrays.asList(new Object []
{
LocalNonnegativeMatrixFactorizationFactory.class,
RandomSeedingStrategyFactory.class, FactorizationQuality.HIGH
}), new double []
{
-0.02333, 0.2, 16.8888
});
}
/**
* Sets the guesstimated iterations number in the factory
. Different
* models are used depending on the actual factorization algorithm, the seeding
* strategy and the qualityLevel
. For the time being a crude linear model
* is assumed based on:
*
* - the number of columns in
A
. The number of rows is assumed to be
* 2.8 bigger than the number of rows (2.8 is pretty much random, the value is taken
* from an application to search results clustering). In case matrix has different
* proportions, the size will be scaled so that the cardinality of the matrix (total
* number of elements) is maintained. The model supports column counts (after scaling)
* ranging from 50 to 400.
* - the number of requested base vectors (read from the factorization factory). The
* model supports k = 5 ... 50.
*
* A new maximum number of iterations will be set in the factory only if the
* requested parameters fall within the ranges supported by the model. In this case
* true
will be returned.
*/
public static boolean setEstimatedIterationsNumber(
IterativeMatrixFactorizationFactory factory, DoubleMatrix2D A,
FactorizationQuality qualityLevel)
{
double [] coefficients = allKnownCoefficients.get(Arrays.asList(new Object []
{
factory.getClass(), factory.getSeedingFactory().getClass(), qualityLevel
}));
if (coefficients != null)
{
double columns = Math.sqrt(A.rows() * A.columns() / 2.8);
if (columns < 50 || columns > 400 || factory.getK() < 5
|| factory.getK() > 50)
{
// That's probably beyond our simplistic model
return false;
}
else
{
int iterations = (int) (columns * coefficients[0] + factory.getK()
* coefficients[1] + coefficients[2]);
factory.setMaxIterations((int) (iterations * 0.6));
return true;
}
}
else
{
return false;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy