All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.carrot2.text.preprocessing.PhraseExtractor Maven / Gradle / Ivy

Go to download

Carrot2 search results clustering framework. Minimal functional subset (core algorithms and infrastructure, no document sources).

There is a newer version: 3.16.3
Show newest version

/*
 * Carrot2 project.
 *
 * Copyright (C) 2002-2019, Dawid Weiss, Stanisław Osiński.
 * All rights reserved.
 *
 * Refer to the full license file "carrot2.LICENSE"
 * in the root folder of the repository checkout or at:
 * http://www.carrot2.org/carrot2.LICENSE
 */

package org.carrot2.text.preprocessing;

import java.util.Collections;
import java.util.List;

import org.carrot2.core.attribute.Processing;
import org.carrot2.text.preprocessing.PreprocessingContext.AllPhrases;
import org.carrot2.text.preprocessing.PreprocessingContext.AllTokens;
import org.carrot2.util.IntMapUtils;
import org.carrot2.util.attribute.*;
import org.carrot2.util.attribute.constraint.IntRange;

import com.carrotsearch.hppc.IntArrayList;
import com.carrotsearch.hppc.IntIntHashMap;
import com.carrotsearch.hppc.cursors.IntIntCursor;
import org.carrot2.shaded.guava.common.collect.Lists;

/**
 * Extracts frequent phrases from the provided document. A frequent phrase is a sequence
 * of words that appears in the documents more than once. This phrase extractor aggregates
 * different inflection variants of phrase words into one phrase, returning the most
 * frequent variant. For example, if phrase computing science appears 2 times and
 * computer sciences appears 4 times, the latter will be returned with aggregated
 * frequency of 6.
 * 

* This class saves the following results to the {@link PreprocessingContext}: *

    *
  • {@link AllPhrases#wordIndices}
  • *
  • {@link AllPhrases#tf}
  • *
  • {@link AllPhrases#tfByDocument}
  • *
  • {@link AllTokens#suffixOrder}
  • *
  • {@link AllTokens#lcp}
  • *
*

* This class requires that {@link Tokenizer}, {@link CaseNormalizer} and * {@link LanguageModelStemmer} be invoked first. */ @Bindable(prefix = "PhraseExtractor") public class PhraseExtractor { /** Internal minimum phrase length, we may want to make it an attribute at some point */ private static final int MIN_PHRASE_LENGTH = 2; /** Internal maximum phrase length, we may want to make it an attribute at some point */ static final int MAX_PHRASE_LENGTH = 8; /** * Phrase Document Frequency threshold. Phrases appearing in fewer than * dfThreshold documents will be ignored. */ @Processing @Input @Attribute @IntRange(min = 1, max = 100) @Label("Phrase document frequency threshold") @Level(AttributeLevel.ADVANCED) @Group(DefaultGroups.PHRASE_EXTRACTION) public int dfThreshold = 1; /** * Suffix sorter to be used by this phrase extractor. When the suffix sorter gets some * attributes, we'll need to make this field public. */ private SuffixSorter suffixSorter = new SuffixSorter(); /** * Performs phrase extraction and saves the results to the provided * context. */ public void extractPhrases(PreprocessingContext context) { // Perform suffix sorting first suffixSorter.suffixSort(context); final int [] suffixArray = context.allTokens.suffixOrder; final int [] lcpArray = context.allTokens.lcp; final int [] wordIndexesArray = context.allTokens.wordIndex; final int [] documentIndexArray = context.allTokens.documentIndex; final int [] stemIndexes = context.allWords.stemIndex; // Find all subphrases List rcs = discoverRcs(suffixArray, lcpArray, documentIndexArray); List phraseWordIndexes = Lists.newArrayList(); IntArrayList phraseTf = new IntArrayList(); List phraseTfByDocumentList = Lists.newArrayList(); if (rcs.size() > 0) { // Determine most frequent originals and create the final phrase // array. Also merge the phrase tf by document maps into flat // arrays. Collections.sort(rcs, new SubstringComparator(wordIndexesArray, stemIndexes)); int totalPhraseTf = rcs.get(0).frequency; Substring mostFrequentOriginal = rcs.get(0); IntIntHashMap phraseTfByDocument = new IntIntHashMap(); phraseTfByDocument.putAll(mostFrequentOriginal.tfByDocument); // Don't change the rcs list type from ArrayList or we'll // run into O(n^2) iteration cost :) for (int i = 0; i < rcs.size() - 1; i++) { final Substring substring = rcs.get(i); final Substring nextSubstring = rcs.get(i + 1); if (substring .isEquivalentTo(nextSubstring, wordIndexesArray, stemIndexes)) { totalPhraseTf += nextSubstring.frequency; addAllWithOffset(phraseTfByDocument, nextSubstring.tfByDocument, -1); if (mostFrequentOriginal.frequency < nextSubstring.frequency) { mostFrequentOriginal = nextSubstring; } } else { int [] wordIndexes = new int [(mostFrequentOriginal.to - mostFrequentOriginal.from)]; for (int j = 0; j < wordIndexes.length; j++) { wordIndexes[j] = wordIndexesArray[mostFrequentOriginal.from + j]; } phraseWordIndexes.add(wordIndexes); phraseTf.add(totalPhraseTf); phraseTfByDocumentList.add(IntMapUtils.flatten(phraseTfByDocument)); totalPhraseTf = nextSubstring.frequency; mostFrequentOriginal = nextSubstring; phraseTfByDocument.clear(); phraseTfByDocument.putAll(nextSubstring.tfByDocument); } } // Add the last substring final Substring substring = rcs.get(rcs.size() - 1); int [] wordIndexes = new int [(substring.to - substring.from)]; for (int j = 0; j < wordIndexes.length; j++) { wordIndexes[j] = wordIndexesArray[mostFrequentOriginal.from + j]; } phraseWordIndexes.add(wordIndexes); phraseTf.add(totalPhraseTf); phraseTfByDocumentList.add(IntMapUtils.flatten(phraseTfByDocument)); } // Store the results to allPhrases context.allPhrases.wordIndices = phraseWordIndexes .toArray(new int [phraseWordIndexes.size()] []); context.allPhrases.tf = phraseTf.toArray(); context.allPhrases.tfByDocument = phraseTfByDocumentList .toArray(new int [phraseTfByDocumentList.size()] []); } /** * Discovers Right Complete Substrings in the given LCP Suffix Array. */ private List discoverRcs(int [] suffixArray, int [] lcpArray, int [] documentIndexArray) { Substring [] rcsStack; int sp; int i; rcsStack = new Substring [lcpArray.length]; sp = -1; i = 1; final List result = Lists.newArrayList(); while (i < lcpArray.length - 1) { final int currentSuffixIndex = suffixArray[i]; final int currentDocumentIndex = documentIndexArray[currentSuffixIndex]; final int currentLcp = Math.min(MAX_PHRASE_LENGTH, lcpArray[i]); if (sp < 0) { if (currentLcp >= MIN_PHRASE_LENGTH) { // Push to the stack phrases of length 2..currentLcp. Only the // topmost phrase will get its frequencies incremented, the other // ones will "inherit" the counts when the topmost phrase is // popped off the stack. final int length = currentLcp; for (int j = length - 2; j >= 0; j--) { sp++; // Set initial tf = 2 for the topmost phrase. For the other phrases, // set tf = 1. During popping of the topmost phrase, the phrase lying // "below" on the stack, will get its tf increased by the tf of // the phrase being popped, minus 1. rcsStack[sp] = new Substring(i, currentSuffixIndex, currentSuffixIndex + currentLcp - j, (j == 0 ? 2 : 1)); // By document tf. Again, topmost phrase gets tf = 2, the other // ones get tf = 1. This time, we need to track from which document's // tf we need to set off the "minus 1", hence the documentIndexToOffset field. rcsStack[sp].tfByDocument = new IntIntHashMap(); rcsStack[sp].tfByDocument.put( documentIndexArray[suffixArray[i - 1]], 1); if (j == 0) { rcsStack[sp].tfByDocument.putOrAdd(currentDocumentIndex, 1, 1); } else { rcsStack[sp].documentIndexToOffset = documentIndexArray[suffixArray[i - 1]]; } } } i++; } else { Substring r = rcsStack[sp]; if ((r.to - r.from) < currentLcp) { Substring r1 = rcsStack[sp]; // The phrase we're about to add is an extension of the topmost // phrase on the stack. The new phrase will contribute to the // topmost phrase's tf, so we need to track the document index // from which we'd set off the "minus 1". r1.documentIndexToOffset = documentIndexArray[suffixArray[i - 1]]; // Add the intermediate phrases too (which makes // the algorithm no longer linear btw) int length = currentLcp - (r1.to - r1.from); for (int j = length - 1; j >= 0; j--) { if (currentLcp - j >= MIN_PHRASE_LENGTH) { sp++; rcsStack[sp] = new Substring(i, currentSuffixIndex, currentSuffixIndex + currentLcp - j, (j == 0 ? 2 : 1)); rcsStack[sp].tfByDocument = new IntIntHashMap(); rcsStack[sp].tfByDocument.put( documentIndexArray[suffixArray[i - 1]], 1); if (j == 0) { rcsStack[sp].tfByDocument.putOrAdd(currentDocumentIndex, 1, 1); } else { rcsStack[sp].documentIndexToOffset = documentIndexArray[suffixArray[i - 1]]; } } } i++; } else { Substring r1 = rcsStack[sp]; if ((r1.to - r1.from) == currentLcp) { // Increase the frequency of the generalized phrase rcsStack[sp].frequency += 1; rcsStack[sp].tfByDocument.putOrAdd(currentDocumentIndex, 1, 1); i++; } else { Substring s; // Pop generalized phrases off the stack do { if (rcsStack[sp].tfByDocument.size() >= dfThreshold) { // Add the generalized phrase to the result result.add(rcsStack[sp]); } s = rcsStack[sp]; sp--; // As we update only the frequency of the stack's // topmost substring we need to propagate the // accumulated frequencies to the shorter // substrings if (sp >= 0) { // The "minus 1" mentioned above. rcsStack[sp].frequency += s.frequency - 1; addAllWithOffset(rcsStack[sp].tfByDocument, s.tfByDocument, rcsStack[sp].documentIndexToOffset); } } while (sp >= 0 && (rcsStack[sp].to - rcsStack[sp].from) > currentLcp); } } } } return result; } private static void addAllWithOffset(IntIntHashMap dest, IntIntHashMap src, int documentIndexToOffset) { for (IntIntCursor c : src) { final int key = c.key; final int value = c.value + (key != documentIndexToOffset ? 0 : -1); dest.putOrAdd(key, value, value); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy