All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.db.SinglePartitionReadCommand Maven / Gradle / Ivy

There is a newer version: 4.3.1.0
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.cassandra.db;

import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.*;

import com.google.common.collect.Iterables;
import com.google.common.collect.Sets;

import org.apache.cassandra.cache.IRowCacheEntry;
import org.apache.cassandra.cache.RowCacheKey;
import org.apache.cassandra.cache.RowCacheSentinel;
import org.apache.cassandra.concurrent.Stage;
import org.apache.cassandra.concurrent.StageManager;
import org.apache.cassandra.config.CFMetaData;
import org.apache.cassandra.config.ColumnDefinition;
import org.apache.cassandra.config.DatabaseDescriptor;
import org.apache.cassandra.db.lifecycle.*;
import org.apache.cassandra.db.filter.*;
import org.apache.cassandra.db.partitions.*;
import org.apache.cassandra.db.rows.*;
import org.apache.cassandra.db.transform.Transformation;
import org.apache.cassandra.exceptions.RequestExecutionException;
import org.apache.cassandra.io.sstable.format.SSTableReader;
import org.apache.cassandra.io.util.DataInputPlus;
import org.apache.cassandra.io.util.DataOutputPlus;
import org.apache.cassandra.metrics.TableMetrics;
import org.apache.cassandra.net.MessageOut;
import org.apache.cassandra.net.MessagingService;
import org.apache.cassandra.schema.IndexMetadata;
import org.apache.cassandra.service.CacheService;
import org.apache.cassandra.service.ClientState;
import org.apache.cassandra.service.StorageProxy;
import org.apache.cassandra.service.pager.*;
import org.apache.cassandra.thrift.ThriftResultsMerger;
import org.apache.cassandra.tracing.Tracing;
import org.apache.cassandra.utils.FBUtilities;
import org.apache.cassandra.utils.SearchIterator;
import org.apache.cassandra.utils.btree.BTreeSet;
import org.apache.cassandra.utils.concurrent.OpOrder;


/**
 * A read command that selects a (part of a) single partition.
 */
public class SinglePartitionReadCommand extends ReadCommand
{
    protected static final SelectionDeserializer selectionDeserializer = new Deserializer();

    private final DecoratedKey partitionKey;
    private final ClusteringIndexFilter clusteringIndexFilter;

    private int oldestUnrepairedTombstone = Integer.MAX_VALUE;

    public SinglePartitionReadCommand(boolean isDigest,
                                      int digestVersion,
                                      boolean isForThrift,
                                      CFMetaData metadata,
                                      int nowInSec,
                                      ColumnFilter columnFilter,
                                      RowFilter rowFilter,
                                      DataLimits limits,
                                      DecoratedKey partitionKey,
                                      ClusteringIndexFilter clusteringIndexFilter)
    {
        super(Kind.SINGLE_PARTITION, isDigest, digestVersion, isForThrift, metadata, nowInSec, columnFilter, rowFilter, limits);
        assert partitionKey.getPartitioner() == metadata.partitioner;
        this.partitionKey = partitionKey;
        this.clusteringIndexFilter = clusteringIndexFilter;
    }

    /**
     * Creates a new read command on a single partition.
     *
     * @param metadata the table to query.
     * @param nowInSec the time in seconds to use are "now" for this query.
     * @param columnFilter the column filter to use for the query.
     * @param rowFilter the row filter to use for the query.
     * @param limits the limits to use for the query.
     * @param partitionKey the partition key for the partition to query.
     * @param clusteringIndexFilter the clustering index filter to use for the query.
     *
     * @return a newly created read command.
     */
    public static SinglePartitionReadCommand create(CFMetaData metadata,
                                                    int nowInSec,
                                                    ColumnFilter columnFilter,
                                                    RowFilter rowFilter,
                                                    DataLimits limits,
                                                    DecoratedKey partitionKey,
                                                    ClusteringIndexFilter clusteringIndexFilter)
    {
        return create(false, metadata, nowInSec, columnFilter, rowFilter, limits, partitionKey, clusteringIndexFilter);
    }

    /**
     * Creates a new read command on a single partition for thrift.
     *
     * @param isForThrift whether the query is for thrift or not.
     * @param metadata the table to query.
     * @param nowInSec the time in seconds to use are "now" for this query.
     * @param columnFilter the column filter to use for the query.
     * @param rowFilter the row filter to use for the query.
     * @param limits the limits to use for the query.
     * @param partitionKey the partition key for the partition to query.
     * @param clusteringIndexFilter the clustering index filter to use for the query.
     *
     * @return a newly created read command.
     */
    public static SinglePartitionReadCommand create(boolean isForThrift,
                                                    CFMetaData metadata,
                                                    int nowInSec,
                                                    ColumnFilter columnFilter,
                                                    RowFilter rowFilter,
                                                    DataLimits limits,
                                                    DecoratedKey partitionKey,
                                                    ClusteringIndexFilter clusteringIndexFilter)
    {
        return new SinglePartitionReadCommand(false, 0, isForThrift, metadata, nowInSec, columnFilter, rowFilter, limits, partitionKey, clusteringIndexFilter);
    }

    /**
     * Creates a new read command on a single partition.
     *
     * @param metadata the table to query.
     * @param nowInSec the time in seconds to use are "now" for this query.
     * @param key the partition key for the partition to query.
     * @param columnFilter the column filter to use for the query.
     * @param filter the clustering index filter to use for the query.
     *
     * @return a newly created read command. The returned command will use no row filter and have no limits.
     */
    public static SinglePartitionReadCommand create(CFMetaData metadata, int nowInSec, DecoratedKey key, ColumnFilter columnFilter, ClusteringIndexFilter filter)
    {
        return create(metadata, nowInSec, columnFilter, RowFilter.NONE, DataLimits.NONE, key, filter);
    }

    /**
     * Creates a new read command that queries a single partition in its entirety.
     *
     * @param metadata the table to query.
     * @param nowInSec the time in seconds to use are "now" for this query.
     * @param key the partition key for the partition to query.
     *
     * @return a newly created read command that queries all the rows of {@code key}.
     */
    public static SinglePartitionReadCommand fullPartitionRead(CFMetaData metadata, int nowInSec, DecoratedKey key)
    {
        return SinglePartitionReadCommand.create(metadata, nowInSec, key, Slices.ALL);
    }

    /**
     * Creates a new read command that queries a single partition in its entirety.
     *
     * @param metadata the table to query.
     * @param nowInSec the time in seconds to use are "now" for this query.
     * @param key the partition key for the partition to query.
     *
     * @return a newly created read command that queries all the rows of {@code key}.
     */
    public static SinglePartitionReadCommand fullPartitionRead(CFMetaData metadata, int nowInSec, ByteBuffer key)
    {
        return SinglePartitionReadCommand.create(metadata, nowInSec, metadata.decorateKey(key), Slices.ALL);
    }

    /**
     * Creates a new single partition slice command for the provided single slice.
     *
     * @param metadata the table to query.
     * @param nowInSec the time in seconds to use are "now" for this query.
     * @param key the partition key for the partition to query.
     * @param slice the slice of rows to query.
     *
     * @return a newly created read command that queries {@code slice} in {@code key}. The returned query will
     * query every columns for the table (without limit or row filtering) and be in forward order.
     */
    public static SinglePartitionReadCommand create(CFMetaData metadata, int nowInSec, DecoratedKey key, Slice slice)
    {
        return create(metadata, nowInSec, key, Slices.with(metadata.comparator, slice));
    }

    /**
     * Creates a new single partition slice command for the provided slices.
     *
     * @param metadata the table to query.
     * @param nowInSec the time in seconds to use are "now" for this query.
     * @param key the partition key for the partition to query.
     * @param slices the slices of rows to query.
     *
     * @return a newly created read command that queries the {@code slices} in {@code key}. The returned query will
     * query every columns for the table (without limit or row filtering) and be in forward order.
     */
    public static SinglePartitionReadCommand create(CFMetaData metadata, int nowInSec, DecoratedKey key, Slices slices)
    {
        ClusteringIndexSliceFilter filter = new ClusteringIndexSliceFilter(slices, false);
        return SinglePartitionReadCommand.create(metadata, nowInSec, ColumnFilter.all(metadata), RowFilter.NONE, DataLimits.NONE, key, filter);
    }

    /**
     * Creates a new single partition slice command for the provided slices.
     *
     * @param metadata the table to query.
     * @param nowInSec the time in seconds to use are "now" for this query.
     * @param key the partition key for the partition to query.
     * @param slices the slices of rows to query.
     *
     * @return a newly created read command that queries the {@code slices} in {@code key}. The returned query will
     * query every columns for the table (without limit or row filtering) and be in forward order.
     */
    public static SinglePartitionReadCommand create(CFMetaData metadata, int nowInSec, ByteBuffer key, Slices slices)
    {
        return create(metadata, nowInSec, metadata.decorateKey(key), slices);
    }

    /**
     * Creates a new single partition name command for the provided rows.
     *
     * @param metadata the table to query.
     * @param nowInSec the time in seconds to use are "now" for this query.
     * @param key the partition key for the partition to query.
     * @param names the clustering for the rows to query.
     *
     * @return a newly created read command that queries the {@code names} in {@code key}. The returned query will
     * query every columns (without limit or row filtering) and be in forward order.
     */
    public static SinglePartitionReadCommand create(CFMetaData metadata, int nowInSec, DecoratedKey key, NavigableSet names)
    {
        ClusteringIndexNamesFilter filter = new ClusteringIndexNamesFilter(names, false);
        return SinglePartitionReadCommand.create(metadata, nowInSec, ColumnFilter.all(metadata), RowFilter.NONE, DataLimits.NONE, key, filter);
    }

    /**
     * Creates a new single partition name command for the provided row.
     *
     * @param metadata the table to query.
     * @param nowInSec the time in seconds to use are "now" for this query.
     * @param key the partition key for the partition to query.
     * @param name the clustering for the row to query.
     *
     * @return a newly created read command that queries {@code name} in {@code key}. The returned query will
     * query every columns (without limit or row filtering).
     */
    public static SinglePartitionReadCommand create(CFMetaData metadata, int nowInSec, DecoratedKey key, Clustering name)
    {
        return create(metadata, nowInSec, key, FBUtilities.singleton(name, metadata.comparator));
    }

    public SinglePartitionReadCommand copy()
    {
        return new SinglePartitionReadCommand(isDigestQuery(), digestVersion(), isForThrift(), metadata(), nowInSec(), columnFilter(), rowFilter(), limits(), partitionKey(), clusteringIndexFilter());
    }

    public DecoratedKey partitionKey()
    {
        return partitionKey;
    }

    public ClusteringIndexFilter clusteringIndexFilter()
    {
        return clusteringIndexFilter;
    }

    public ClusteringIndexFilter clusteringIndexFilter(DecoratedKey key)
    {
        return clusteringIndexFilter;
    }

    public long getTimeout()
    {
        return DatabaseDescriptor.getReadRpcTimeout();
    }

    public boolean selectsKey(DecoratedKey key)
    {
        if (!this.partitionKey().equals(key))
            return false;

        return rowFilter().partitionKeyRestrictionsAreSatisfiedBy(key, metadata().getKeyValidator());
    }

    public boolean selectsClustering(DecoratedKey key, Clustering clustering)
    {
        if (clustering == Clustering.STATIC_CLUSTERING)
            return !columnFilter().fetchedColumns().statics.isEmpty();

        if (!clusteringIndexFilter().selects(clustering))
            return false;

        return rowFilter().clusteringKeyRestrictionsAreSatisfiedBy(clustering);
    }

    /**
     * Returns a new command suitable to paging from the last returned row.
     *
     * @param lastReturned the last row returned by the previous page. The newly created command
     * will only query row that comes after this (in query order). This can be {@code null} if this
     * is the first page.
     * @param limits the limits to use for the page to query.
     *
     * @return the newly create command.
     */
    public SinglePartitionReadCommand forPaging(Clustering lastReturned, DataLimits limits)
    {
        // We shouldn't have set digest yet when reaching that point
        assert !isDigestQuery();
        return create(isForThrift(),
                      metadata(),
                      nowInSec(),
                      columnFilter(),
                      rowFilter(),
                      limits,
                      partitionKey(),
                      lastReturned == null ? clusteringIndexFilter() : clusteringIndexFilter.forPaging(metadata().comparator, lastReturned, false));
    }

    public PartitionIterator execute(ConsistencyLevel consistency, ClientState clientState) throws RequestExecutionException
    {
        return StorageProxy.read(Group.one(this), consistency, clientState);
    }

    public SinglePartitionPager getPager(PagingState pagingState, int protocolVersion)
    {
        return getPager(this, pagingState, protocolVersion);
    }

    private static SinglePartitionPager getPager(SinglePartitionReadCommand command, PagingState pagingState, int protocolVersion)
    {
        return new SinglePartitionPager(command, pagingState, protocolVersion);
    }

    protected void recordLatency(TableMetrics metric, long latencyNanos)
    {
        metric.readLatency.addNano(latencyNanos);
    }

    @SuppressWarnings("resource") // we close the created iterator through closing the result of this method (and SingletonUnfilteredPartitionIterator ctor cannot fail)
    protected UnfilteredPartitionIterator queryStorage(final ColumnFamilyStore cfs, ReadExecutionController executionController)
    {
        UnfilteredRowIterator partition = cfs.isRowCacheEnabled()
                                        ? getThroughCache(cfs, executionController)
                                        : queryMemtableAndDisk(cfs, executionController);
        return new SingletonUnfilteredPartitionIterator(partition, isForThrift());
    }

    /**
     * Fetch the rows requested if in cache; if not, read it from disk and cache it.
     * 

* If the partition is cached, and the filter given is within its bounds, we return * from cache, otherwise from disk. *

* If the partition is is not cached, we figure out what filter is "biggest", read * that from disk, then filter the result and either cache that or return it. */ private UnfilteredRowIterator getThroughCache(ColumnFamilyStore cfs, ReadExecutionController executionController) { assert !cfs.isIndex(); // CASSANDRA-5732 assert cfs.isRowCacheEnabled() : String.format("Row cache is not enabled on table [%s]", cfs.name); RowCacheKey key = new RowCacheKey(metadata().ksAndCFName, partitionKey()); // Attempt a sentinel-read-cache sequence. if a write invalidates our sentinel, we'll return our // (now potentially obsolete) data, but won't cache it. see CASSANDRA-3862 // TODO: don't evict entire partitions on writes (#2864) IRowCacheEntry cached = CacheService.instance.rowCache.get(key); if (cached != null) { if (cached instanceof RowCacheSentinel) { // Some other read is trying to cache the value, just do a normal non-caching read Tracing.trace("Row cache miss (race)"); cfs.metric.rowCacheMiss.inc(); return queryMemtableAndDisk(cfs, executionController); } CachedPartition cachedPartition = (CachedPartition)cached; if (cfs.isFilterFullyCoveredBy(clusteringIndexFilter(), limits(), cachedPartition, nowInSec())) { cfs.metric.rowCacheHit.inc(); Tracing.trace("Row cache hit"); UnfilteredRowIterator unfilteredRowIterator = clusteringIndexFilter().getUnfilteredRowIterator(columnFilter(), cachedPartition); cfs.metric.updateSSTableIterated(0); return unfilteredRowIterator; } cfs.metric.rowCacheHitOutOfRange.inc(); Tracing.trace("Ignoring row cache as cached value could not satisfy query"); return queryMemtableAndDisk(cfs, executionController); } cfs.metric.rowCacheMiss.inc(); Tracing.trace("Row cache miss"); boolean cacheFullPartitions = metadata().params.caching.cacheAllRows(); // To be able to cache what we read, what we read must at least covers what the cache holds, that // is the 'rowsToCache' first rows of the partition. We could read those 'rowsToCache' first rows // systematically, but we'd have to "extend" that to whatever is needed for the user query that the // 'rowsToCache' first rows don't cover and it's not trivial with our existing filters. So currently // we settle for caching what we read only if the user query does query the head of the partition since // that's the common case of when we'll be able to use the cache anyway. One exception is if we cache // full partitions, in which case we just always read it all and cache. if (cacheFullPartitions || clusteringIndexFilter().isHeadFilter()) { RowCacheSentinel sentinel = new RowCacheSentinel(); boolean sentinelSuccess = CacheService.instance.rowCache.putIfAbsent(key, sentinel); boolean sentinelReplaced = false; try { int rowsToCache = metadata().params.caching.rowsPerPartitionToCache(); @SuppressWarnings("resource") // we close on exception or upon closing the result of this method UnfilteredRowIterator iter = SinglePartitionReadCommand.fullPartitionRead(metadata(), nowInSec(), partitionKey()).queryMemtableAndDisk(cfs, executionController); try { // We want to cache only rowsToCache rows CachedPartition toCache = CachedBTreePartition.create(DataLimits.cqlLimits(rowsToCache).filter(iter, nowInSec()), nowInSec()); if (sentinelSuccess && !toCache.isEmpty()) { Tracing.trace("Caching {} rows", toCache.rowCount()); CacheService.instance.rowCache.replace(key, sentinel, toCache); // Whether or not the previous replace has worked, our sentinel is not in the cache anymore sentinelReplaced = true; } // We then re-filter out what this query wants. // Note that in the case where we don't cache full partitions, it's possible that the current query is interested in more // than what we've cached, so we can't just use toCache. UnfilteredRowIterator cacheIterator = clusteringIndexFilter().getUnfilteredRowIterator(columnFilter(), toCache); if (cacheFullPartitions) { // Everything is guaranteed to be in 'toCache', we're done with 'iter' assert !iter.hasNext(); iter.close(); return cacheIterator; } return UnfilteredRowIterators.concat(cacheIterator, clusteringIndexFilter().filterNotIndexed(columnFilter(), iter)); } catch (RuntimeException | Error e) { iter.close(); throw e; } } finally { if (sentinelSuccess && !sentinelReplaced) cfs.invalidateCachedPartition(key); } } Tracing.trace("Fetching data but not populating cache as query does not query from the start of the partition"); return queryMemtableAndDisk(cfs, executionController); } /** * Queries both memtable and sstables to fetch the result of this query. *

* Please note that this method: * 1) does not check the row cache. * 2) does not apply the query limit, nor the row filter (and so ignore 2ndary indexes). * Those are applied in {@link ReadCommand#executeLocally}. * 3) does not record some of the read metrics (latency, scanned cells histograms) nor * throws TombstoneOverwhelmingException. * It is publicly exposed because there is a few places where that is exactly what we want, * but it should be used only where you know you don't need thoses things. *

* Also note that one must have created a {@code ReadExecutionController} on the queried table and we require it as * a parameter to enforce that fact, even though it's not explicitlly used by the method. */ public UnfilteredRowIterator queryMemtableAndDisk(ColumnFamilyStore cfs, ReadExecutionController executionController) { assert executionController != null && executionController.validForReadOn(cfs); Tracing.trace("Executing single-partition query on {}", cfs.name); return queryMemtableAndDiskInternal(cfs); } @Override protected int oldestUnrepairedTombstone() { return oldestUnrepairedTombstone; } private UnfilteredRowIterator queryMemtableAndDiskInternal(ColumnFamilyStore cfs) { /* * We have 2 main strategies: * 1) We query memtables and sstables simulateneously. This is our most generic strategy and the one we use * unless we have a names filter that we know we can optimize futher. * 2) If we have a name filter (so we query specific rows), we can make a bet: that all column for all queried row * will have data in the most recent sstable(s), thus saving us from reading older ones. This does imply we * have a way to guarantee we have all the data for what is queried, which is only possible for name queries * and if we have neither collections nor counters (indeed, for a collection, we can't guarantee an older sstable * won't have some elements that weren't in the most recent sstables, and counters are intrinsically a collection * of shards so have the same problem). */ if (clusteringIndexFilter() instanceof ClusteringIndexNamesFilter && queryNeitherCountersNorCollections()) return queryMemtableAndSSTablesInTimestampOrder(cfs, (ClusteringIndexNamesFilter)clusteringIndexFilter()); Tracing.trace("Acquiring sstable references"); ColumnFamilyStore.ViewFragment view = cfs.select(View.select(SSTableSet.LIVE, partitionKey())); List iterators = new ArrayList<>(Iterables.size(view.memtables) + view.sstables.size()); ClusteringIndexFilter filter = clusteringIndexFilter(); long minTimestamp = Long.MAX_VALUE; try { for (Memtable memtable : view.memtables) { Partition partition = memtable.getPartition(partitionKey()); if (partition == null) continue; minTimestamp = Math.min(minTimestamp, memtable.getMinTimestamp()); @SuppressWarnings("resource") // 'iter' is added to iterators which is closed on exception, or through the closing of the final merged iterator UnfilteredRowIterator iter = filter.getUnfilteredRowIterator(columnFilter(), partition); oldestUnrepairedTombstone = Math.min(oldestUnrepairedTombstone, partition.stats().minLocalDeletionTime); iterators.add(isForThrift() ? ThriftResultsMerger.maybeWrap(iter, nowInSec()) : iter); } /* * We can't eliminate full sstables based on the timestamp of what we've already read like * in collectTimeOrderedData, but we still want to eliminate sstable whose maxTimestamp < mostRecentTombstone * we've read. We still rely on the sstable ordering by maxTimestamp since if * maxTimestamp_s1 > maxTimestamp_s0, * we're guaranteed that s1 cannot have a row tombstone such that * timestamp(tombstone) > maxTimestamp_s0 * since we necessarily have * timestamp(tombstone) <= maxTimestamp_s1 * In other words, iterating in maxTimestamp order allow to do our mostRecentPartitionTombstone elimination * in one pass, and minimize the number of sstables for which we read a partition tombstone. */ Collections.sort(view.sstables, SSTableReader.maxTimestampComparator); long mostRecentPartitionTombstone = Long.MIN_VALUE; int nonIntersectingSSTables = 0; List skippedSSTablesWithTombstones = null; for (SSTableReader sstable : view.sstables) { // if we've already seen a partition tombstone with a timestamp greater // than the most recent update to this sstable, we can skip it if (sstable.getMaxTimestamp() < mostRecentPartitionTombstone) break; if (!shouldInclude(sstable)) { nonIntersectingSSTables++; if (sstable.hasTombstones()) { // if sstable has tombstones we need to check after one pass if it can be safely skipped if (skippedSSTablesWithTombstones == null) skippedSSTablesWithTombstones = new ArrayList<>(); skippedSSTablesWithTombstones.add(sstable); } continue; } minTimestamp = Math.min(minTimestamp, sstable.getMinTimestamp()); @SuppressWarnings("resource") // 'iter' is added to iterators which is closed on exception, // or through the closing of the final merged iterator UnfilteredRowIteratorWithLowerBound iter = makeIterator(cfs, sstable, true); if (!sstable.isRepaired()) oldestUnrepairedTombstone = Math.min(oldestUnrepairedTombstone, sstable.getMinLocalDeletionTime()); iterators.add(iter); mostRecentPartitionTombstone = Math.max(mostRecentPartitionTombstone, iter.partitionLevelDeletion().markedForDeleteAt()); } int includedDueToTombstones = 0; // Check for sstables with tombstones that are not expired if (skippedSSTablesWithTombstones != null) { for (SSTableReader sstable : skippedSSTablesWithTombstones) { if (sstable.getMaxTimestamp() <= minTimestamp) continue; @SuppressWarnings("resource") // 'iter' is added to iterators which is close on exception, // or through the closing of the final merged iterator UnfilteredRowIteratorWithLowerBound iter = makeIterator(cfs, sstable, false); if (!sstable.isRepaired()) oldestUnrepairedTombstone = Math.min(oldestUnrepairedTombstone, sstable.getMinLocalDeletionTime()); iterators.add(iter); includedDueToTombstones++; } } if (Tracing.isTracing()) Tracing.trace("Skipped {}/{} non-slice-intersecting sstables, included {} due to tombstones", nonIntersectingSSTables, view.sstables.size(), includedDueToTombstones); if (iterators.isEmpty()) return EmptyIterators.unfilteredRow(cfs.metadata, partitionKey(), filter.isReversed()); StorageHook.instance.reportRead(cfs.metadata.cfId, partitionKey()); return withStateTracking(withSSTablesIterated(iterators, cfs.metric)); } catch (RuntimeException | Error e) { try { FBUtilities.closeAll(iterators); } catch (Exception suppressed) { e.addSuppressed(suppressed); } throw e; } } private boolean shouldInclude(SSTableReader sstable) { // If some static columns are queried, we should always include the sstable: the clustering values stats of the sstable // don't tell us if the sstable contains static values in particular. // TODO: we could record if a sstable contains any static value at all. if (!columnFilter().fetchedColumns().statics.isEmpty()) return true; return clusteringIndexFilter().shouldInclude(sstable); } private UnfilteredRowIteratorWithLowerBound makeIterator(ColumnFamilyStore cfs, final SSTableReader sstable, boolean applyThriftTransformation) { return StorageHook.instance.makeRowIteratorWithLowerBound(cfs, partitionKey(), sstable, clusteringIndexFilter(), columnFilter(), isForThrift(), nowInSec(), applyThriftTransformation); } /** * Return a wrapped iterator that when closed will update the sstables iterated and READ sample metrics. * Note that we cannot use the Transformations framework because they greedily get the static row, which * would cause all iterators to be initialized and hence all sstables to be accessed. */ private UnfilteredRowIterator withSSTablesIterated(List iterators, TableMetrics metrics) { @SuppressWarnings("resource") // Closed through the closing of the result of the caller method. UnfilteredRowIterator merged = UnfilteredRowIterators.merge(iterators, nowInSec()); if (!merged.isEmpty()) { DecoratedKey key = merged.partitionKey(); metrics.samplers.get(TableMetrics.Sampler.READS).addSample(key.getKey(), key.hashCode(), 1); } class UpdateSstablesIterated extends Transformation { public void onPartitionClose() { int sstablesIterated = (int)iterators.stream() .filter(it -> it instanceof LazilyInitializedUnfilteredRowIterator) .filter(it -> ((LazilyInitializedUnfilteredRowIterator)it).initialized()) .count(); metrics.updateSSTableIterated(sstablesIterated); Tracing.trace("Merged data from memtables and {} sstables", sstablesIterated); } }; return Transformation.apply(merged, new UpdateSstablesIterated()); } private boolean queryNeitherCountersNorCollections() { for (ColumnDefinition column : columnFilter().fetchedColumns()) { if (column.type.isCollection() || column.type.isCounter()) return false; } return true; } /** * Do a read by querying the memtable(s) first, and then each relevant sstables sequentially by order of the sstable * max timestamp. * * This is used for names query in the hope of only having to query the 1 or 2 most recent query and then knowing nothing * more recent could be in the older sstables (which we can only guarantee if we know exactly which row we queries, and if * no collection or counters are included). * This method assumes the filter is a {@code ClusteringIndexNamesFilter}. */ private UnfilteredRowIterator queryMemtableAndSSTablesInTimestampOrder(ColumnFamilyStore cfs, ClusteringIndexNamesFilter filter) { Tracing.trace("Acquiring sstable references"); ColumnFamilyStore.ViewFragment view = cfs.select(View.select(SSTableSet.LIVE, partitionKey())); ImmutableBTreePartition result = null; Tracing.trace("Merging memtable contents"); for (Memtable memtable : view.memtables) { Partition partition = memtable.getPartition(partitionKey()); if (partition == null) continue; try (UnfilteredRowIterator iter = filter.getUnfilteredRowIterator(columnFilter(), partition)) { if (iter.isEmpty()) continue; result = add(isForThrift() ? ThriftResultsMerger.maybeWrap(iter, nowInSec()) : iter, result, filter, false); } } /* add the SSTables on disk */ Collections.sort(view.sstables, SSTableReader.maxTimestampComparator); int sstablesIterated = 0; boolean onlyUnrepaired = true; // read sorted sstables for (SSTableReader sstable : view.sstables) { // if we've already seen a partition tombstone with a timestamp greater // than the most recent update to this sstable, we're done, since the rest of the sstables // will also be older if (result != null && sstable.getMaxTimestamp() < result.partitionLevelDeletion().markedForDeleteAt()) break; long currentMaxTs = sstable.getMaxTimestamp(); filter = reduceFilter(filter, result, currentMaxTs); if (filter == null) break; if (!shouldInclude(sstable)) { // This mean that nothing queried by the filter can be in the sstable. One exception is the top-level partition deletion // however: if it is set, it impacts everything and must be included. Getting that top-level partition deletion costs us // some seek in general however (unless the partition is indexed and is in the key cache), so we first check if the sstable // has any tombstone at all as a shortcut. if (!sstable.hasTombstones()) continue; // no tombstone at all, we can skip that sstable // We need to get the partition deletion and include it if it's live. In any case though, we're done with that sstable. sstable.incrementReadCount(); try (UnfilteredRowIterator iter = StorageHook.instance.makeRowIterator(cfs, sstable, partitionKey(), Slices.ALL, columnFilter(), filter.isReversed(), isForThrift())) { if (iter.partitionLevelDeletion().isLive()) { sstablesIterated++; result = add(UnfilteredRowIterators.noRowsIterator(iter.metadata(), iter.partitionKey(), Rows.EMPTY_STATIC_ROW, iter.partitionLevelDeletion(), filter.isReversed()), result, filter, sstable.isRepaired()); } } continue; } Tracing.trace("Merging data from sstable {}", sstable.descriptor.generation); sstable.incrementReadCount(); try (UnfilteredRowIterator iter = StorageHook.instance.makeRowIterator(cfs, sstable, partitionKey(), filter.getSlices(metadata()), columnFilter(), filter.isReversed(), isForThrift())) { if (iter.isEmpty()) continue; if (sstable.isRepaired()) onlyUnrepaired = false; sstablesIterated++; result = add(isForThrift() ? ThriftResultsMerger.maybeWrap(iter, nowInSec()) : iter, result, filter, sstable.isRepaired()); } } cfs.metric.updateSSTableIterated(sstablesIterated); if (result == null || result.isEmpty()) return EmptyIterators.unfilteredRow(metadata(), partitionKey(), false); DecoratedKey key = result.partitionKey(); cfs.metric.samplers.get(TableMetrics.Sampler.READS).addSample(key.getKey(), key.hashCode(), 1); StorageHook.instance.reportRead(cfs.metadata.cfId, partitionKey()); // "hoist up" the requested data into a more recent sstable if (sstablesIterated > cfs.getMinimumCompactionThreshold() && onlyUnrepaired && !cfs.isAutoCompactionDisabled() && cfs.getCompactionStrategyManager().shouldDefragment()) { // !!WARNING!! if we stop copying our data to a heap-managed object, // we will need to track the lifetime of this mutation as well Tracing.trace("Defragmenting requested data"); try (UnfilteredRowIterator iter = result.unfilteredIterator(columnFilter(), Slices.ALL, false)) { final Mutation mutation = new Mutation(PartitionUpdate.fromIterator(iter, columnFilter())); StageManager.getStage(Stage.MUTATION).execute(() -> { // skipping commitlog and index updates is fine since we're just de-fragmenting existing data Keyspace.open(mutation.getKeyspaceName()).apply(mutation, false, false); }); } } return withStateTracking(result.unfilteredIterator(columnFilter(), Slices.ALL, clusteringIndexFilter().isReversed())); } private ImmutableBTreePartition add(UnfilteredRowIterator iter, ImmutableBTreePartition result, ClusteringIndexNamesFilter filter, boolean isRepaired) { if (!isRepaired) oldestUnrepairedTombstone = Math.min(oldestUnrepairedTombstone, iter.stats().minLocalDeletionTime); int maxRows = Math.max(filter.requestedRows().size(), 1); if (result == null) return ImmutableBTreePartition.create(iter, maxRows); try (UnfilteredRowIterator merged = UnfilteredRowIterators.merge(Arrays.asList(iter, result.unfilteredIterator(columnFilter(), Slices.ALL, filter.isReversed())), nowInSec())) { return ImmutableBTreePartition.create(merged, maxRows); } } private ClusteringIndexNamesFilter reduceFilter(ClusteringIndexNamesFilter filter, Partition result, long sstableTimestamp) { if (result == null) return filter; SearchIterator searchIter = result.searchIterator(columnFilter(), false); PartitionColumns columns = columnFilter().fetchedColumns(); NavigableSet clusterings = filter.requestedRows(); // We want to remove rows for which we have values for all requested columns. We have to deal with both static and regular rows. // TODO: we could also remove a selected column if we've found values for every requested row but we'll leave // that for later. boolean removeStatic = false; if (!columns.statics.isEmpty()) { Row staticRow = searchIter.next(Clustering.STATIC_CLUSTERING); removeStatic = staticRow != null && canRemoveRow(staticRow, columns.statics, sstableTimestamp); } NavigableSet toRemove = null; for (Clustering clustering : clusterings) { if (!searchIter.hasNext()) break; Row row = searchIter.next(clustering); if (row == null || !canRemoveRow(row, columns.regulars, sstableTimestamp)) continue; if (toRemove == null) toRemove = new TreeSet<>(result.metadata().comparator); toRemove.add(clustering); } if (!removeStatic && toRemove == null) return filter; // Check if we have everything we need boolean hasNoMoreStatic = columns.statics.isEmpty() || removeStatic; boolean hasNoMoreClusterings = clusterings.isEmpty() || (toRemove != null && toRemove.size() == clusterings.size()); if (hasNoMoreStatic && hasNoMoreClusterings) return null; if (toRemove != null) { BTreeSet.Builder newClusterings = BTreeSet.builder(result.metadata().comparator); newClusterings.addAll(Sets.difference(clusterings, toRemove)); clusterings = newClusterings.build(); } return new ClusteringIndexNamesFilter(clusterings, filter.isReversed()); } private boolean canRemoveRow(Row row, Columns requestedColumns, long sstableTimestamp) { // We can remove a row if it has data that is more recent that the next sstable to consider for the data that the query // cares about. And the data we care about is 1) the row timestamp (since every query cares if the row exists or not) // and 2) the requested columns. if (row.primaryKeyLivenessInfo().isEmpty() || row.primaryKeyLivenessInfo().timestamp() <= sstableTimestamp) return false; for (ColumnDefinition column : requestedColumns) { Cell cell = row.getCell(column); if (cell == null || cell.timestamp() <= sstableTimestamp) return false; } return true; } @Override public String toString() { return String.format("Read(%s.%s columns=%s rowFilter=%s limits=%s key=%s filter=%s, nowInSec=%d)", metadata().ksName, metadata().cfName, columnFilter(), rowFilter(), limits(), metadata().getKeyValidator().getString(partitionKey().getKey()), clusteringIndexFilter.toString(metadata()), nowInSec()); } public MessageOut createMessage(int version) { return new MessageOut<>(MessagingService.Verb.READ, this, readSerializer); } protected void appendCQLWhereClause(StringBuilder sb) { sb.append(" WHERE "); sb.append(ColumnDefinition.toCQLString(metadata().partitionKeyColumns())).append(" = "); DataRange.appendKeyString(sb, metadata().getKeyValidator(), partitionKey().getKey()); // We put the row filter first because the clustering index filter can end by "ORDER BY" if (!rowFilter().isEmpty()) sb.append(" AND ").append(rowFilter()); String filterString = clusteringIndexFilter().toCQLString(metadata()); if (!filterString.isEmpty()) sb.append(" AND ").append(filterString); } protected void serializeSelection(DataOutputPlus out, int version) throws IOException { metadata().getKeyValidator().writeValue(partitionKey().getKey(), out); ClusteringIndexFilter.serializer.serialize(clusteringIndexFilter(), out, version); } protected long selectionSerializedSize(int version) { return metadata().getKeyValidator().writtenLength(partitionKey().getKey()) + ClusteringIndexFilter.serializer.serializedSize(clusteringIndexFilter(), version); } /** * Groups multiple single partition read commands. */ public static class Group implements ReadQuery { public final List commands; private final DataLimits limits; private final int nowInSec; public Group(List commands, DataLimits limits) { assert !commands.isEmpty(); this.commands = commands; this.limits = limits; this.nowInSec = commands.get(0).nowInSec(); for (int i = 1; i < commands.size(); i++) assert commands.get(i).nowInSec() == nowInSec; } public static Group one(SinglePartitionReadCommand command) { return new Group(Collections.singletonList(command), command.limits()); } public PartitionIterator execute(ConsistencyLevel consistency, ClientState clientState) throws RequestExecutionException { return StorageProxy.read(this, consistency, clientState); } public int nowInSec() { return nowInSec; } public DataLimits limits() { return limits; } public CFMetaData metadata() { return commands.get(0).metadata(); } public ReadExecutionController executionController() { // Note that the only difference between the command in a group must be the partition key on which // they applied. So as far as ReadOrderGroup is concerned, we can use any of the commands to start one. return commands.get(0).executionController(); } public PartitionIterator executeInternal(ReadExecutionController controller) { List partitions = new ArrayList<>(commands.size()); for (SinglePartitionReadCommand cmd : commands) partitions.add(cmd.executeInternal(controller)); // Because we only have enforce the limit per command, we need to enforce it globally. return limits.filter(PartitionIterators.concat(partitions), nowInSec); } public QueryPager getPager(PagingState pagingState, int protocolVersion) { if (commands.size() == 1) return SinglePartitionReadCommand.getPager(commands.get(0), pagingState, protocolVersion); return new MultiPartitionPager(this, pagingState, protocolVersion); } public boolean selectsKey(DecoratedKey key) { return Iterables.any(commands, c -> c.selectsKey(key)); } public boolean selectsClustering(DecoratedKey key, Clustering clustering) { return Iterables.any(commands, c -> c.selectsClustering(key, clustering)); } @Override public String toString() { return commands.toString(); } } private static class Deserializer extends SelectionDeserializer { public ReadCommand deserialize(DataInputPlus in, int version, boolean isDigest, int digestVersion, boolean isForThrift, CFMetaData metadata, int nowInSec, ColumnFilter columnFilter, RowFilter rowFilter, DataLimits limits, Optional index) throws IOException { DecoratedKey key = metadata.decorateKey(metadata.getKeyValidator().readValue(in, DatabaseDescriptor.getMaxValueSize())); ClusteringIndexFilter filter = ClusteringIndexFilter.serializer.deserialize(in, version, metadata); return new SinglePartitionReadCommand(isDigest, digestVersion, isForThrift, metadata, nowInSec, columnFilter, rowFilter, limits, key, filter); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy