org.apache.cassandra.index.SecondaryIndexManager Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cassandra-unit-shaded Show documentation
Show all versions of cassandra-unit-shaded Show documentation
Shaded version of cassandra-unit
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.cassandra.index;
import java.lang.reflect.Constructor;
import java.util.*;
import java.util.concurrent.*;
import java.util.function.Function;
import java.util.stream.Collectors;
import java.util.stream.Stream;
import com.google.common.base.Joiner;
import com.google.common.base.Strings;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Iterables;
import com.google.common.collect.Maps;
import com.google.common.collect.Sets;
import com.google.common.primitives.Longs;
import com.google.common.util.concurrent.Futures;
import com.google.common.util.concurrent.MoreExecutors;
import org.apache.commons.lang3.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.cassandra.concurrent.JMXEnabledThreadPoolExecutor;
import org.apache.cassandra.concurrent.NamedThreadFactory;
import org.apache.cassandra.concurrent.StageManager;
import org.apache.cassandra.config.ColumnDefinition;
import org.apache.cassandra.cql3.statements.IndexTarget;
import org.apache.cassandra.db.*;
import org.apache.cassandra.db.compaction.CompactionManager;
import org.apache.cassandra.db.filter.RowFilter;
import org.apache.cassandra.db.lifecycle.SSTableSet;
import org.apache.cassandra.db.lifecycle.View;
import org.apache.cassandra.db.partitions.PartitionUpdate;
import org.apache.cassandra.db.rows.*;
import org.apache.cassandra.exceptions.InvalidRequestException;
import org.apache.cassandra.index.internal.CassandraIndex;
import org.apache.cassandra.index.transactions.*;
import org.apache.cassandra.io.sstable.format.SSTableReader;
import org.apache.cassandra.schema.IndexMetadata;
import org.apache.cassandra.schema.Indexes;
import org.apache.cassandra.tracing.Tracing;
import org.apache.cassandra.utils.FBUtilities;
import org.apache.cassandra.utils.concurrent.OpOrder;
import org.apache.cassandra.utils.concurrent.Refs;
/**
* Handles the core maintenance functionality associated with indexes: adding/removing them to or from
* a table, (re)building during bootstrap or other streaming operations, flushing, reloading metadata
* and so on.
*
* The Index interface defines a number of methods which return Callable>. These are primarily the
* management tasks for an index implementation. Most of them are currently executed in a blocking
* fashion via submission to SIM's blockingExecutor. This provides the desired behaviour in pretty
* much all cases, as tasks like flushing an index needs to be executed synchronously to avoid potentially
* deadlocking on the FlushWriter or PostFlusher. Several of these Callable> returning methods on Index could
* then be defined with as void and called directly from SIM (rather than being run via the executor service).
* Separating the task defintion from execution gives us greater flexibility though, so that in future, for example,
* if the flush process allows it we leave open the possibility of executing more of these tasks asynchronously.
*
* The primary exception to the above is the Callable returned from Index#addIndexedColumn. This may
* involve a significant effort, building a new index over any existing data. We perform this task asynchronously;
* as it is called as part of a schema update, which we do not want to block for a long period. Building non-custom
* indexes is performed on the CompactionManager.
*
* This class also provides instances of processors which listen to updates to the base table and forward to
* registered Indexes the info required to keep those indexes up to date.
* There are two variants of these processors, each with a factory method provided by SIM:
* IndexTransaction: deals with updates generated on the regular write path.
* CleanupTransaction: used when partitions are modified during compaction or cleanup operations.
* Further details on their usage and lifecycles can be found in the interface definitions below.
*
* Finally, the bestIndexFor method is used at query time to identify the most selective index of those able
* to satisfy any search predicates defined by a ReadCommand's RowFilter. It returns a thin IndexAccessor object
* which enables the ReadCommand to access the appropriate functions of the Index at various stages in its lifecycle.
* e.g. the getEstimatedResultRows is required when StorageProxy calculates the initial concurrency factor for
* distributing requests to replicas, whereas a Searcher instance is needed when the ReadCommand is executed locally on
* a target replica.
*/
public class SecondaryIndexManager implements IndexRegistry
{
private static final Logger logger = LoggerFactory.getLogger(SecondaryIndexManager.class);
private Map indexes = Maps.newConcurrentMap();
/**
* The indexes that are ready to server requests.
*/
private Set builtIndexes = Sets.newConcurrentHashSet();
// executes tasks returned by Indexer#addIndexColumn which may require index(es) to be (re)built
private static final ExecutorService asyncExecutor =
new JMXEnabledThreadPoolExecutor(1,
StageManager.KEEPALIVE,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(),
new NamedThreadFactory("SecondaryIndexManagement"),
"internal");
// executes all blocking tasks produced by Indexers e.g. getFlushTask, getMetadataReloadTask etc
private static final ExecutorService blockingExecutor = MoreExecutors.newDirectExecutorService();
/**
* The underlying column family containing the source data for these indexes
*/
public final ColumnFamilyStore baseCfs;
public SecondaryIndexManager(ColumnFamilyStore baseCfs)
{
this.baseCfs = baseCfs;
}
/**
* Drops and adds new indexes associated with the underlying CF
*/
public void reload()
{
// figure out what needs to be added and dropped.
Indexes tableIndexes = baseCfs.metadata.getIndexes();
indexes.keySet()
.stream()
.filter(indexName -> !tableIndexes.has(indexName))
.forEach(this::removeIndex);
// we call add for every index definition in the collection as
// some may not have been created here yet, only added to schema
for (IndexMetadata tableIndex : tableIndexes)
addIndex(tableIndex);
}
private Future> reloadIndex(IndexMetadata indexDef)
{
Index index = indexes.get(indexDef.name);
Callable> reloadTask = index.getMetadataReloadTask(indexDef);
return reloadTask == null
? Futures.immediateFuture(null)
: blockingExecutor.submit(reloadTask);
}
private Future> createIndex(IndexMetadata indexDef)
{
Index index = createInstance(indexDef);
index.register(this);
// if the index didn't register itself, we can probably assume that no initialization needs to happen
final Callable> initialBuildTask = indexes.containsKey(indexDef.name)
? index.getInitializationTask()
: null;
if (initialBuildTask == null)
{
// We need to make sure that the index is marked as built in the case where the initialBuildTask
// does not need to be run (if the index didn't register itself or if the base table was empty).
markIndexBuilt(indexDef.name);
return Futures.immediateFuture(null);
}
return asyncExecutor.submit(index.getInitializationTask());
}
/**
* Adds and builds a index
* @param indexDef the IndexMetadata describing the index
*/
public synchronized Future> addIndex(IndexMetadata indexDef)
{
if (indexes.containsKey(indexDef.name))
return reloadIndex(indexDef);
else
return createIndex(indexDef);
}
/**
* Checks if the specified index is queryable.
*
* @param index the index
* @return true
if the specified index is queryable, false
otherwise
*/
public boolean isIndexQueryable(Index index)
{
return builtIndexes.contains(index.getIndexMetadata().name);
}
public synchronized void removeIndex(String indexName)
{
Index index = unregisterIndex(indexName);
if (null != index)
{
markIndexRemoved(indexName);
executeBlocking(index.getInvalidateTask());
}
}
public Set getDependentIndexes(ColumnDefinition column)
{
if (indexes.isEmpty())
return Collections.emptySet();
Set dependentIndexes = new HashSet<>();
for (Index index : indexes.values())
if (index.dependsOn(column))
dependentIndexes.add(index.getIndexMetadata());
return dependentIndexes;
}
/**
* Called when dropping a Table
*/
public void markAllIndexesRemoved()
{
getBuiltIndexNames().forEach(this::markIndexRemoved);
}
/**
* Does a full, blocking rebuild of the indexes specified by columns from the sstables.
* Caller must acquire and release references to the sstables used here.
* Note also that only this method of (re)building indexes:
* a) takes a set of index *names* rather than Indexers
* b) marks exsiting indexes removed prior to rebuilding
*
* @param sstables the data to build from
* @param indexNames the list of indexes to be rebuilt
*/
public void rebuildIndexesBlocking(Collection sstables, Set indexNames)
{
Set toRebuild = indexes.values().stream()
.filter(index -> indexNames.contains(index.getIndexMetadata().name))
.filter(Index::shouldBuildBlocking)
.collect(Collectors.toSet());
if (toRebuild.isEmpty())
{
logger.info("No defined indexes with the supplied names: {}", Joiner.on(',').join(indexNames));
return;
}
toRebuild.forEach(indexer -> markIndexRemoved(indexer.getIndexMetadata().name));
buildIndexesBlocking(sstables, toRebuild);
toRebuild.forEach(indexer -> markIndexBuilt(indexer.getIndexMetadata().name));
}
public void buildAllIndexesBlocking(Collection sstables)
{
buildIndexesBlocking(sstables, indexes.values()
.stream()
.filter(Index::shouldBuildBlocking)
.collect(Collectors.toSet()));
}
// For convenience, may be called directly from Index impls
public void buildIndexBlocking(Index index)
{
if (index.shouldBuildBlocking())
{
try (ColumnFamilyStore.RefViewFragment viewFragment = baseCfs.selectAndReference(View.selectFunction(SSTableSet.CANONICAL));
Refs sstables = viewFragment.refs)
{
buildIndexesBlocking(sstables, Collections.singleton(index));
markIndexBuilt(index.getIndexMetadata().name);
}
}
}
/**
* Checks if the specified {@link ColumnFamilyStore} is a secondary index.
*
* @param cfs the ColumnFamilyStore
to check.
* @return true
if the specified ColumnFamilyStore
is a secondary index,
* false
otherwise.
*/
public static boolean isIndexColumnFamilyStore(ColumnFamilyStore cfs)
{
return isIndexColumnFamily(cfs.name);
}
/**
* Checks if the specified {@link ColumnFamilyStore} is the one secondary index.
*
* @param cfName the name of the ColumnFamilyStore
to check.
* @return true
if the specified ColumnFamilyStore
is a secondary index,
* false
otherwise.
*/
public static boolean isIndexColumnFamily(String cfName)
{
return cfName.contains(Directories.SECONDARY_INDEX_NAME_SEPARATOR);
}
/**
* Returns the parent of the specified {@link ColumnFamilyStore}.
*
* @param cfs the ColumnFamilyStore
* @return the parent of the specified ColumnFamilyStore
*/
public static ColumnFamilyStore getParentCfs(ColumnFamilyStore cfs)
{
String parentCfs = getParentCfsName(cfs.name);
return cfs.keyspace.getColumnFamilyStore(parentCfs);
}
/**
* Returns the parent name of the specified {@link ColumnFamilyStore}.
*
* @param cfName the ColumnFamilyStore
name
* @return the parent name of the specified ColumnFamilyStore
*/
public static String getParentCfsName(String cfName)
{
assert isIndexColumnFamily(cfName);
return StringUtils.substringBefore(cfName, Directories.SECONDARY_INDEX_NAME_SEPARATOR);
}
/**
* Returns the index name
*
* @param cfs the ColumnFamilyStore
* @return the index name
*/
public static String getIndexName(ColumnFamilyStore cfs)
{
return getIndexName(cfs.name);
}
/**
* Returns the index name
*
* @param cfName the ColumnFamilyStore
name
* @return the index name
*/
public static String getIndexName(String cfName)
{
assert isIndexColumnFamily(cfName);
return StringUtils.substringAfter(cfName, Directories.SECONDARY_INDEX_NAME_SEPARATOR);
}
private void buildIndexesBlocking(Collection sstables, Set indexes)
{
if (indexes.isEmpty())
return;
logger.info("Submitting index build of {} for data in {}",
indexes.stream().map(i -> i.getIndexMetadata().name).collect(Collectors.joining(",")),
sstables.stream().map(SSTableReader::toString).collect(Collectors.joining(",")));
Map> byType = new HashMap<>();
for (Index index : indexes)
{
Set stored = byType.computeIfAbsent(index.getBuildTaskSupport(), i -> new HashSet<>());
stored.add(index);
}
List> futures = byType.entrySet()
.stream()
.map((e) -> e.getKey().getIndexBuildTask(baseCfs, e.getValue(), sstables))
.map(CompactionManager.instance::submitIndexBuild)
.collect(Collectors.toList());
FBUtilities.waitOnFutures(futures);
flushIndexesBlocking(indexes);
logger.info("Index build of {} complete",
indexes.stream().map(i -> i.getIndexMetadata().name).collect(Collectors.joining(",")));
}
/**
* Marks the specified index as build.
* This method is public as it need to be accessible from the {@link Index} implementations
* @param indexName the index name
*/
public void markIndexBuilt(String indexName)
{
builtIndexes.add(indexName);
SystemKeyspace.setIndexBuilt(baseCfs.keyspace.getName(), indexName);
}
/**
* Marks the specified index as removed.
* This method is public as it need to be accessible from the {@link Index} implementations
* @param indexName the index name
*/
public void markIndexRemoved(String indexName)
{
SystemKeyspace.setIndexRemoved(baseCfs.keyspace.getName(), indexName);
}
public Index getIndexByName(String indexName)
{
return indexes.get(indexName);
}
private Index createInstance(IndexMetadata indexDef)
{
Index newIndex;
if (indexDef.isCustom())
{
assert indexDef.options != null;
String className = indexDef.options.get(IndexTarget.CUSTOM_INDEX_OPTION_NAME);
assert ! Strings.isNullOrEmpty(className);
try
{
Class extends Index> indexClass = FBUtilities.classForName(className, "Index");
Constructor extends Index> ctor = indexClass.getConstructor(ColumnFamilyStore.class, IndexMetadata.class);
newIndex = (Index)ctor.newInstance(baseCfs, indexDef);
}
catch (Exception e)
{
throw new RuntimeException(e);
}
}
else
{
newIndex = CassandraIndex.newIndex(baseCfs, indexDef);
}
return newIndex;
}
/**
* Truncate all indexes
*/
public void truncateAllIndexesBlocking(final long truncatedAt)
{
executeAllBlocking(indexes.values().stream(), (index) -> index.getTruncateTask(truncatedAt));
}
/**
* Remove all indexes
*/
public void invalidateAllIndexesBlocking()
{
markAllIndexesRemoved();
executeAllBlocking(indexes.values().stream(), Index::getInvalidateTask);
}
/**
* Perform a blocking flush all indexes
*/
public void flushAllIndexesBlocking()
{
flushIndexesBlocking(ImmutableSet.copyOf(indexes.values()));
}
/**
* Perform a blocking flush of selected indexes
*/
public void flushIndexesBlocking(Set indexes)
{
if (indexes.isEmpty())
return;
List> wait = new ArrayList<>();
List nonCfsIndexes = new ArrayList<>();
// for each CFS backed index, submit a flush task which we'll wait on for completion
// for the non-CFS backed indexes, we'll flush those while we wait.
synchronized (baseCfs.getTracker())
{
indexes.forEach(index ->
index.getBackingTable()
.map(cfs -> wait.add(cfs.forceFlush()))
.orElseGet(() -> nonCfsIndexes.add(index)));
}
executeAllBlocking(nonCfsIndexes.stream(), Index::getBlockingFlushTask);
FBUtilities.waitOnFutures(wait);
}
/**
* Performs a blocking flush of all custom indexes
*/
public void flushAllNonCFSBackedIndexesBlocking()
{
executeAllBlocking(indexes.values()
.stream()
.filter(index -> !index.getBackingTable().isPresent()),
Index::getBlockingFlushTask);
}
/**
* @return all indexes which are marked as built and ready to use
*/
public List getBuiltIndexNames()
{
Set allIndexNames = new HashSet<>();
indexes.values().stream()
.map(i -> i.getIndexMetadata().name)
.forEach(allIndexNames::add);
return SystemKeyspace.getBuiltIndexes(baseCfs.keyspace.getName(), allIndexNames);
}
/**
* @return all backing Tables used by registered indexes
*/
public Set getAllIndexColumnFamilyStores()
{
Set backingTables = new HashSet<>();
indexes.values().forEach(index -> index.getBackingTable().ifPresent(backingTables::add));
return backingTables;
}
/**
* @return if there are ANY indexes registered for this table
*/
public boolean hasIndexes()
{
return !indexes.isEmpty();
}
/**
* When building an index against existing data in sstables, add the given partition to the index
*/
public void indexPartition(UnfilteredRowIterator partition, OpOrder.Group opGroup, Set indexes, int nowInSec)
{
if (!indexes.isEmpty())
{
DecoratedKey key = partition.partitionKey();
Set indexers = indexes.stream()
.map(index -> index.indexerFor(key,
partition.columns(),
nowInSec,
opGroup,
IndexTransaction.Type.UPDATE))
.filter(Objects::nonNull)
.collect(Collectors.toSet());
indexers.forEach(Index.Indexer::begin);
try (RowIterator filtered = UnfilteredRowIterators.filter(partition, nowInSec))
{
if (!filtered.staticRow().isEmpty())
indexers.forEach(indexer -> indexer.insertRow(filtered.staticRow()));
while (filtered.hasNext())
{
Row row = filtered.next();
indexers.forEach(indexer -> indexer.insertRow(row));
}
}
indexers.forEach(Index.Indexer::finish);
}
}
/**
* Delete all data from all indexes for this partition.
* For when cleanup rips a partition out entirely.
*
* TODO : improve cleanup transaction to batch updates and perform them async
*/
public void deletePartition(UnfilteredRowIterator partition, int nowInSec)
{
// we need to acquire memtable lock because secondary index deletion may
// cause a race (see CASSANDRA-3712). This is done internally by the
// index transaction when it commits
CleanupTransaction indexTransaction = newCleanupTransaction(partition.partitionKey(),
partition.columns(),
nowInSec);
indexTransaction.start();
indexTransaction.onPartitionDeletion(new DeletionTime(FBUtilities.timestampMicros(), nowInSec));
indexTransaction.commit();
while (partition.hasNext())
{
Unfiltered unfiltered = partition.next();
if (unfiltered.kind() != Unfiltered.Kind.ROW)
continue;
indexTransaction = newCleanupTransaction(partition.partitionKey(),
partition.columns(),
nowInSec);
indexTransaction.start();
indexTransaction.onRowDelete((Row)unfiltered);
indexTransaction.commit();
}
}
/**
* Called at query time to choose which (if any) of the registered index implementations to use for a given query.
*
* This is a two step processes, firstly compiling the set of searchable indexes then choosing the one which reduces
* the search space the most.
*
* In the first phase, if the command's RowFilter contains any custom index expressions, the indexes that they
* specify are automatically included. Following that, the registered indexes are filtered to include only those
* which support the standard expressions in the RowFilter.
*
* The filtered set then sorted by selectivity, as reported by the Index implementations' getEstimatedResultRows
* method.
*
* Implementation specific validation of the target expression, either custom or standard, by the selected
* index should be performed in the searcherFor method to ensure that we pick the right index regardless of
* the validity of the expression.
*
* This method is only called once during the lifecycle of a ReadCommand and the result is
* cached for future use when obtaining a Searcher, getting the index's underlying CFS for
* ReadOrderGroup, or an estimate of the result size from an average index query.
*
* @param command ReadCommand to be executed
* @return an Index instance, ready to use during execution of the command, or null if none
* of the registered indexes can support the command.
*/
public Index getBestIndexFor(ReadCommand command)
{
if (indexes.isEmpty() || command.rowFilter().isEmpty())
return null;
Set searchableIndexes = new HashSet<>();
for (RowFilter.Expression expression : command.rowFilter())
{
if (expression.isCustom())
{
// Only a single custom expression is allowed per query and, if present,
// we want to always favour the index specified in such an expression
RowFilter.CustomExpression customExpression = (RowFilter.CustomExpression)expression;
logger.trace("Command contains a custom index expression, using target index {}", customExpression.getTargetIndex().name);
Tracing.trace("Command contains a custom index expression, using target index {}", customExpression.getTargetIndex().name);
return indexes.get(customExpression.getTargetIndex().name);
}
else if (!expression.isUserDefined())
{
indexes.values().stream()
.filter(index -> index.supportsExpression(expression.column(), expression.operator()))
.forEach(searchableIndexes::add);
}
}
if (searchableIndexes.isEmpty())
{
logger.trace("No applicable indexes found");
Tracing.trace("No applicable indexes found");
return null;
}
Index selected = searchableIndexes.size() == 1
? Iterables.getOnlyElement(searchableIndexes)
: searchableIndexes.stream()
.min((a, b) -> Longs.compare(a.getEstimatedResultRows(),
b.getEstimatedResultRows()))
.orElseThrow(() -> new AssertionError("Could not select most selective index"));
// pay for an additional threadlocal get() rather than build the strings unnecessarily
if (Tracing.isTracing())
{
Tracing.trace("Index mean cardinalities are {}. Scanning with {}.",
searchableIndexes.stream().map(i -> i.getIndexMetadata().name + ':' + i.getEstimatedResultRows())
.collect(Collectors.joining(",")),
selected.getIndexMetadata().name);
}
return selected;
}
public Optional getBestIndexFor(RowFilter.Expression expression)
{
return indexes.values().stream().filter((i) -> i.supportsExpression(expression.column(), expression.operator())).findFirst();
}
/**
* Called at write time to ensure that values present in the update
* are valid according to the rules of all registered indexes which
* will process it. The partition key as well as the clustering and
* cell values for each row in the update may be checked by index
* implementations
* @param update PartitionUpdate containing the values to be validated by registered Index implementations
* @throws InvalidRequestException
*/
public void validate(PartitionUpdate update) throws InvalidRequestException
{
for (Index index : indexes.values())
index.validate(update);
}
/**
* IndexRegistry methods
*/
public void registerIndex(Index index)
{
String name = index.getIndexMetadata().name;
indexes.put(name, index);
logger.trace("Registered index {}", name);
}
public void unregisterIndex(Index index)
{
unregisterIndex(index.getIndexMetadata().name);
}
private Index unregisterIndex(String name)
{
Index removed = indexes.remove(name);
builtIndexes.remove(name);
logger.trace(removed == null ? "Index {} was not registered" : "Removed index {} from registry",
name);
return removed;
}
public Index getIndex(IndexMetadata metadata)
{
return indexes.get(metadata.name);
}
public Collection listIndexes()
{
return ImmutableSet.copyOf(indexes.values());
}
/**
* Handling of index updates.
* Implementations of the various IndexTransaction interfaces, for keeping indexes in sync with base data
* during updates, compaction and cleanup. Plus factory methods for obtaining transaction instances.
*/
/**
* Transaction for updates on the write path.
*/
public UpdateTransaction newUpdateTransaction(PartitionUpdate update, OpOrder.Group opGroup, int nowInSec)
{
if (!hasIndexes())
return UpdateTransaction.NO_OP;
Index.Indexer[] indexers = indexes.values().stream()
.map(i -> i.indexerFor(update.partitionKey(),
update.columns(),
nowInSec,
opGroup,
IndexTransaction.Type.UPDATE))
.filter(Objects::nonNull)
.toArray(Index.Indexer[]::new);
return indexers.length == 0 ? UpdateTransaction.NO_OP : new WriteTimeTransaction(indexers);
}
/**
* Transaction for use when merging rows during compaction
*/
public CompactionTransaction newCompactionTransaction(DecoratedKey key,
PartitionColumns partitionColumns,
int versions,
int nowInSec)
{
// the check for whether there are any registered indexes is already done in CompactionIterator
return new IndexGCTransaction(key, partitionColumns, versions, nowInSec, listIndexes());
}
/**
* Transaction for use when removing partitions during cleanup
*/
public CleanupTransaction newCleanupTransaction(DecoratedKey key,
PartitionColumns partitionColumns,
int nowInSec)
{
if (!hasIndexes())
return CleanupTransaction.NO_OP;
return new CleanupGCTransaction(key, partitionColumns, nowInSec, listIndexes());
}
/**
* A single use transaction for processing a partition update on the regular write path
*/
private static final class WriteTimeTransaction implements UpdateTransaction
{
private final Index.Indexer[] indexers;
private WriteTimeTransaction(Index.Indexer...indexers)
{
// don't allow null indexers, if we don't need any use a NullUpdater object
for (Index.Indexer indexer : indexers) assert indexer != null;
this.indexers = indexers;
}
public void start()
{
for (Index.Indexer indexer : indexers)
indexer.begin();
}
public void onPartitionDeletion(DeletionTime deletionTime)
{
for (Index.Indexer indexer : indexers)
indexer.partitionDelete(deletionTime);
}
public void onRangeTombstone(RangeTombstone tombstone)
{
for (Index.Indexer indexer : indexers)
indexer.rangeTombstone(tombstone);
}
public void onInserted(Row row)
{
for (Index.Indexer indexer : indexers)
indexer.insertRow(row);
}
public void onUpdated(Row existing, Row updated)
{
final Row.Builder toRemove = BTreeRow.sortedBuilder();
toRemove.newRow(existing.clustering());
toRemove.addPrimaryKeyLivenessInfo(existing.primaryKeyLivenessInfo());
toRemove.addRowDeletion(existing.deletion());
final Row.Builder toInsert = BTreeRow.sortedBuilder();
toInsert.newRow(updated.clustering());
toInsert.addPrimaryKeyLivenessInfo(updated.primaryKeyLivenessInfo());
toInsert.addRowDeletion(updated.deletion());
// diff listener collates the columns to be added & removed from the indexes
RowDiffListener diffListener = new RowDiffListener()
{
public void onPrimaryKeyLivenessInfo(int i, Clustering clustering, LivenessInfo merged, LivenessInfo original)
{
}
public void onDeletion(int i, Clustering clustering, Row.Deletion merged, Row.Deletion original)
{
}
public void onComplexDeletion(int i, Clustering clustering, ColumnDefinition column, DeletionTime merged, DeletionTime original)
{
}
public void onCell(int i, Clustering clustering, Cell merged, Cell original)
{
if (merged != null && !merged.equals(original))
toInsert.addCell(merged);
if (merged == null || (original != null && shouldCleanupOldValue(original, merged)))
toRemove.addCell(original);
}
};
Rows.diff(diffListener, updated, existing);
Row oldRow = toRemove.build();
Row newRow = toInsert.build();
for (Index.Indexer indexer : indexers)
indexer.updateRow(oldRow, newRow);
}
public void commit()
{
for (Index.Indexer indexer : indexers)
indexer.finish();
}
private boolean shouldCleanupOldValue(Cell oldCell, Cell newCell)
{
// If either the value or timestamp is different, then we
// should delete from the index. If not, then we can infer that
// at least one of the cells is an ExpiringColumn and that the
// difference is in the expiry time. In this case, we don't want to
// delete the old value from the index as the tombstone we insert
// will just hide the inserted value.
// Completely identical cells (including expiring columns with
// identical ttl & localExpirationTime) will not get this far due
// to the oldCell.equals(newCell) in StandardUpdater.update
return !oldCell.value().equals(newCell.value()) || oldCell.timestamp() != newCell.timestamp();
}
}
/**
* A single-use transaction for updating indexes for a single partition during compaction where the only
* operation is to merge rows
* TODO : make this smarter at batching updates so we can use a single transaction to process multiple rows in
* a single partition
*/
private static final class IndexGCTransaction implements CompactionTransaction
{
private final DecoratedKey key;
private final PartitionColumns columns;
private final int versions;
private final int nowInSec;
private final Collection indexes;
private Row[] rows;
private IndexGCTransaction(DecoratedKey key,
PartitionColumns columns,
int versions,
int nowInSec,
Collection indexes)
{
this.key = key;
this.columns = columns;
this.versions = versions;
this.indexes = indexes;
this.nowInSec = nowInSec;
}
public void start()
{
if (versions > 0)
rows = new Row[versions];
}
public void onRowMerge(Row merged, Row...versions)
{
// Diff listener constructs rows representing deltas between the merged and original versions
// These delta rows are then passed to registered indexes for removal processing
final Row.Builder[] builders = new Row.Builder[versions.length];
RowDiffListener diffListener = new RowDiffListener()
{
public void onPrimaryKeyLivenessInfo(int i, Clustering clustering, LivenessInfo merged, LivenessInfo original)
{
if (original != null && (merged == null || !merged.isLive(nowInSec)))
getBuilder(i, clustering).addPrimaryKeyLivenessInfo(original);
}
public void onDeletion(int i, Clustering clustering, Row.Deletion merged, Row.Deletion original)
{
}
public void onComplexDeletion(int i, Clustering clustering, ColumnDefinition column, DeletionTime merged, DeletionTime original)
{
}
public void onCell(int i, Clustering clustering, Cell merged, Cell original)
{
if (original != null && (merged == null || !merged.isLive(nowInSec)))
getBuilder(i, clustering).addCell(original);
}
private Row.Builder getBuilder(int index, Clustering clustering)
{
if (builders[index] == null)
{
builders[index] = BTreeRow.sortedBuilder();
builders[index].newRow(clustering);
}
return builders[index];
}
};
Rows.diff(diffListener, merged, versions);
for(int i = 0; i < builders.length; i++)
if (builders[i] != null)
rows[i] = builders[i].build();
}
public void commit()
{
if (rows == null)
return;
try (OpOrder.Group opGroup = Keyspace.writeOrder.start())
{
for (Index index : indexes)
{
Index.Indexer indexer = index.indexerFor(key, columns, nowInSec, opGroup, Type.COMPACTION);
if (indexer == null)
continue;
indexer.begin();
for (Row row : rows)
if (row != null)
indexer.removeRow(row);
indexer.finish();
}
}
}
}
/**
* A single-use transaction for updating indexes for a single partition during cleanup, where
* partitions and rows are only removed
* TODO : make this smarter at batching updates so we can use a single transaction to process multiple rows in
* a single partition
*/
private static final class CleanupGCTransaction implements CleanupTransaction
{
private final DecoratedKey key;
private final PartitionColumns columns;
private final int nowInSec;
private final Collection indexes;
private Row row;
private DeletionTime partitionDelete;
private CleanupGCTransaction(DecoratedKey key,
PartitionColumns columns,
int nowInSec,
Collection indexes)
{
this.key = key;
this.columns = columns;
this.indexes = indexes;
this.nowInSec = nowInSec;
}
public void start()
{
}
public void onPartitionDeletion(DeletionTime deletionTime)
{
partitionDelete = deletionTime;
}
public void onRowDelete(Row row)
{
this.row = row;
}
public void commit()
{
if (row == null && partitionDelete == null)
return;
try (OpOrder.Group opGroup = Keyspace.writeOrder.start())
{
for (Index index : indexes)
{
Index.Indexer indexer = index.indexerFor(key, columns, nowInSec, opGroup, Type.CLEANUP);
if (indexer == null)
continue;
indexer.begin();
if (partitionDelete != null)
indexer.partitionDelete(partitionDelete);
if (row != null)
indexer.removeRow(row);
indexer.finish();
}
}
}
}
private static void executeBlocking(Callable> task)
{
if (null != task)
FBUtilities.waitOnFuture(blockingExecutor.submit(task));
}
private static void executeAllBlocking(Stream indexers, Function> function)
{
if (function == null)
{
logger.error("failed to flush indexes: {} because flush task is missing.", indexers);
return;
}
List> waitFor = new ArrayList<>();
indexers.forEach(indexer -> {
Callable> task = function.apply(indexer);
if (null != task)
waitFor.add(blockingExecutor.submit(task));
});
FBUtilities.waitOnFutures(waitFor);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy