com.redhat.ceylon.langtools.tools.javac.tree.TreeInfo Maven / Gradle / Ivy
/*
* Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.redhat.ceylon.langtools.tools.javac.tree;
import com.redhat.ceylon.langtools.source.tree.Tree;
import com.redhat.ceylon.langtools.source.util.TreePath;
import com.redhat.ceylon.langtools.tools.javac.code.*;
import com.redhat.ceylon.langtools.tools.javac.comp.AttrContext;
import com.redhat.ceylon.langtools.tools.javac.comp.Env;
import com.redhat.ceylon.langtools.tools.javac.tree.JCTree.*;
import com.redhat.ceylon.langtools.tools.javac.tree.JCTree.JCPolyExpression.*;
import com.redhat.ceylon.langtools.tools.javac.util.*;
import com.redhat.ceylon.langtools.tools.javac.util.JCDiagnostic.DiagnosticPosition;
import static com.redhat.ceylon.langtools.tools.javac.code.Flags.*;
import static com.redhat.ceylon.langtools.tools.javac.code.TypeTag.BOT;
import static com.redhat.ceylon.langtools.tools.javac.tree.JCTree.Tag.*;
import static com.redhat.ceylon.langtools.tools.javac.tree.JCTree.Tag.BLOCK;
import static com.redhat.ceylon.langtools.tools.javac.tree.JCTree.Tag.SYNCHRONIZED;
/** Utility class containing inspector methods for trees.
*
* This is NOT part of any supported API.
* If you write code that depends on this, you do so at your own risk.
* This code and its internal interfaces are subject to change or
* deletion without notice.
*/
public class TreeInfo {
protected static final Context.Key treeInfoKey =
new Context.Key();
public static TreeInfo instance(Context context) {
TreeInfo instance = context.get(treeInfoKey);
if (instance == null)
instance = new TreeInfo(context);
return instance;
}
/** The names of all operators.
*/
private Name[] opname = new Name[Tag.getNumberOfOperators()];
private void setOpname(Tag tag, String name, Names names) {
setOpname(tag, names.fromString(name));
}
private void setOpname(Tag tag, Name name) {
opname[tag.operatorIndex()] = name;
}
private TreeInfo(Context context) {
context.put(treeInfoKey, this);
Names names = Names.instance(context);
/* Internally we use +++, --- for unary +, - to reduce +, - operators
* overloading
*/
setOpname(POS, "+++", names);
setOpname(NEG, "---", names);
setOpname(NOT, "!", names);
setOpname(COMPL, "~", names);
setOpname(PREINC, "++", names);
setOpname(PREDEC, "--", names);
setOpname(POSTINC, "++", names);
setOpname(POSTDEC, "--", names);
setOpname(NULLCHK, "<*nullchk*>", names);
setOpname(OR, "||", names);
setOpname(AND, "&&", names);
setOpname(EQ, "==", names);
setOpname(NE, "!=", names);
setOpname(LT, "<", names);
setOpname(GT, ">", names);
setOpname(LE, "<=", names);
setOpname(GE, ">=", names);
setOpname(BITOR, "|", names);
setOpname(BITXOR, "^", names);
setOpname(BITAND, "&", names);
setOpname(SL, "<<", names);
setOpname(SR, ">>", names);
setOpname(USR, ">>>", names);
setOpname(PLUS, "+", names);
setOpname(MINUS, names.hyphen);
setOpname(MUL, names.asterisk);
setOpname(DIV, names.slash);
setOpname(MOD, "%", names);
}
public static List args(JCTree t) {
switch (t.getTag()) {
case APPLY:
return ((JCMethodInvocation)t).args;
case NEWCLASS:
return ((JCNewClass)t).args;
default:
return null;
}
}
/** Return name of operator with given tree tag.
*/
public Name operatorName(JCTree.Tag tag) {
return opname[tag.operatorIndex()];
}
/** Is tree a constructor declaration?
*/
public static boolean isConstructor(JCTree tree) {
if (tree.hasTag(METHODDEF)) {
Name name = ((JCMethodDecl) tree).name;
return name == name.table.names.init;
} else {
return false;
}
}
public static boolean isReceiverParam(JCTree tree) {
if (tree.hasTag(VARDEF)) {
return ((JCVariableDecl)tree).nameexpr != null;
} else {
return false;
}
}
/** Is there a constructor declaration in the given list of trees?
*/
public static boolean hasConstructors(List trees) {
for (List l = trees; l.nonEmpty(); l = l.tail)
if (isConstructor(l.head)) return true;
return false;
}
public static boolean isMultiCatch(JCCatch catchClause) {
return catchClause.param.vartype.hasTag(TYPEUNION);
}
/** Is statement an initializer for a synthetic field?
*/
public static boolean isSyntheticInit(JCTree stat) {
if (stat.hasTag(EXEC)) {
JCExpressionStatement exec = (JCExpressionStatement)stat;
if (exec.expr.hasTag(ASSIGN)) {
JCAssign assign = (JCAssign)exec.expr;
if (assign.lhs.hasTag(SELECT)) {
JCFieldAccess select = (JCFieldAccess)assign.lhs;
if (select.sym != null &&
(select.sym.flags() & SYNTHETIC) != 0) {
Name selected = name(select.selected);
if (selected != null && selected == selected.table.names._this)
return true;
}
}
}
}
return false;
}
/** If the expression is a method call, return the method name, null
* otherwise. */
public static Name calledMethodName(JCTree tree) {
if (tree.hasTag(EXEC)) {
JCExpressionStatement exec = (JCExpressionStatement)tree;
if (exec.expr.hasTag(APPLY)) {
Name mname = TreeInfo.name(((JCMethodInvocation) exec.expr).meth);
return mname;
}
}
return null;
}
private static boolean calledMethodNameisSelfOrSuper(JCTree tree, boolean this_, boolean super_) {
if (tree.getTag() == JCTree.Tag.EXEC) {
JCExpressionStatement exec = (JCExpressionStatement)tree;
if (exec.expr.getTag() == JCTree.Tag.APPLY) {
Name mname = TreeInfo.name(((JCMethodInvocation) exec.expr).meth);
if (this_ && mname == mname.table.names._this) {
return true;
} else if (super_ && mname == mname.table.names._super) {
return true;
}
return false;
}
if (exec.expr.getTag() == JCTree.Tag.LETEXPR) {
LetExpr let = (LetExpr)exec.expr;
for (JCStatement stmt : let.stats) {
if (calledMethodNameisSelfOrSuper(stmt, this_, super_)) {
return true;
}
}
return calledMethodNameisSelfOrSuper(let.expr, this_, super_);
}
}
return false;
}
/** Is this a call to this or super?
*/
public static boolean isSelfCall(JCTree tree) {
return calledMethodNameisSelfOrSuper(tree, true, true);
}
/** Is this a call to super?
*/
public static boolean isSuperCall(JCTree tree) {
return calledMethodNameisSelfOrSuper(tree, false, true);
}
/** Is this a constructor whose first (non-synthetic) statement is not
* of the form this(...)?
*/
public static boolean isInitialConstructor(JCTree tree) {
JCMethodInvocation app = firstConstructorCall(tree);
if (app == null) return false;
Name meth = name(app.meth);
return meth == null || meth != meth.table.names._this;
}
/** Return the first call in a constructor definition. */
public static JCMethodInvocation firstConstructorCall(JCTree tree) {
if (!tree.hasTag(METHODDEF)) return null;
JCMethodDecl md = (JCMethodDecl) tree;
Names names = md.name.table.names;
if (md.name != names.init) return null;
if (md.body == null) return null;
List stats = md.body.stats;
// Synthetic initializations can appear before the super call.
while (stats.nonEmpty() && isSyntheticInit(stats.head))
stats = stats.tail;
if (stats.isEmpty()) return null;
if (!stats.head.hasTag(EXEC)) return null;
JCExpressionStatement exec = (JCExpressionStatement) stats.head;
if (!exec.expr.hasTag(APPLY)) return null;
return (JCMethodInvocation)exec.expr;
}
/** Return true if a tree represents a diamond new expr. */
public static boolean isDiamond(JCTree tree) {
switch(tree.getTag()) {
case TYPEAPPLY: return ((JCTypeApply)tree).getTypeArguments().isEmpty();
case NEWCLASS: return isDiamond(((JCNewClass)tree).clazz);
case ANNOTATED_TYPE: return isDiamond(((JCAnnotatedType)tree).underlyingType);
default: return false;
}
}
public static boolean isEnumInit(JCTree tree) {
switch (tree.getTag()) {
case VARDEF:
return (((JCVariableDecl)tree).mods.flags & ENUM) != 0;
default:
return false;
}
}
/** set 'polyKind' on given tree */
public static void setPolyKind(JCTree tree, PolyKind pkind) {
switch (tree.getTag()) {
case APPLY:
((JCMethodInvocation)tree).polyKind = pkind;
break;
case NEWCLASS:
((JCNewClass)tree).polyKind = pkind;
break;
case REFERENCE:
((JCMemberReference)tree).refPolyKind = pkind;
break;
default:
throw new AssertionError("Unexpected tree: " + tree);
}
}
/** set 'varargsElement' on given tree */
public static void setVarargsElement(JCTree tree, Type varargsElement) {
switch (tree.getTag()) {
case APPLY:
((JCMethodInvocation)tree).varargsElement = varargsElement;
break;
case NEWCLASS:
((JCNewClass)tree).varargsElement = varargsElement;
break;
case REFERENCE:
((JCMemberReference)tree).varargsElement = varargsElement;
break;
default:
throw new AssertionError("Unexpected tree: " + tree);
}
}
/** Return true if the tree corresponds to an expression statement */
public static boolean isExpressionStatement(JCExpression tree) {
switch(tree.getTag()) {
case PREINC: case PREDEC:
case POSTINC: case POSTDEC:
case ASSIGN:
case BITOR_ASG: case BITXOR_ASG: case BITAND_ASG:
case SL_ASG: case SR_ASG: case USR_ASG:
case PLUS_ASG: case MINUS_ASG:
case MUL_ASG: case DIV_ASG: case MOD_ASG:
case APPLY: case NEWCLASS:
case ERRONEOUS:
return true;
default:
return false;
}
}
/**
* Return true if the AST corresponds to a static select of the kind A.B
*/
public static boolean isStaticSelector(JCTree base, Names names) {
if (base == null)
return false;
switch (base.getTag()) {
case IDENT:
JCIdent id = (JCIdent)base;
return id.name != names._this &&
id.name != names._super &&
isStaticSym(base);
case SELECT:
return isStaticSym(base) &&
isStaticSelector(((JCFieldAccess)base).selected, names);
case TYPEAPPLY:
case TYPEARRAY:
return true;
case ANNOTATED_TYPE:
return isStaticSelector(((JCAnnotatedType)base).underlyingType, names);
default:
return false;
}
}
//where
private static boolean isStaticSym(JCTree tree) {
Symbol sym = symbol(tree);
return (sym.kind == Kinds.TYP ||
sym.kind == Kinds.PCK);
}
/** Return true if a tree represents the null literal. */
public static boolean isNull(JCTree tree) {
if (!tree.hasTag(LITERAL))
return false;
JCLiteral lit = (JCLiteral) tree;
return (lit.typetag == BOT);
}
/** Return true iff this tree is a child of some annotation. */
public static boolean isInAnnotation(Env> env, JCTree tree) {
TreePath tp = TreePath.getPath(env.toplevel, tree);
if (tp != null) {
for (Tree t : tp) {
if (t.getKind() == Tree.Kind.ANNOTATION)
return true;
}
}
return false;
}
/** The position of the first statement in a block, or the position of
* the block itself if it is empty.
*/
public static int firstStatPos(JCTree tree) {
if (tree.hasTag(BLOCK) && ((JCBlock) tree).stats.nonEmpty())
return ((JCBlock) tree).stats.head.pos;
else
return tree.pos;
}
/** The end position of given tree, if it is a block with
* defined endpos.
*/
public static int endPos(JCTree tree) {
if (tree.hasTag(BLOCK) && ((JCBlock) tree).endpos != Position.NOPOS)
return ((JCBlock) tree).endpos;
else if (tree.hasTag(SYNCHRONIZED))
return endPos(((JCSynchronized) tree).body);
else if (tree.hasTag(TRY)) {
JCTry t = (JCTry) tree;
return endPos((t.finalizer != null) ? t.finalizer
: (t.catchers.nonEmpty() ? t.catchers.last().body : t.body));
} else
return tree.pos;
}
/** Get the start position for a tree node. The start position is
* defined to be the position of the first character of the first
* token of the node's source text.
* @param tree The tree node
*/
public static int getStartPos(JCTree tree) {
if (tree == null)
return Position.NOPOS;
switch(tree.getTag()) {
case APPLY:
return getStartPos(((JCMethodInvocation) tree).meth);
case ASSIGN:
return getStartPos(((JCAssign) tree).lhs);
case BITOR_ASG: case BITXOR_ASG: case BITAND_ASG:
case SL_ASG: case SR_ASG: case USR_ASG:
case PLUS_ASG: case MINUS_ASG: case MUL_ASG:
case DIV_ASG: case MOD_ASG:
return getStartPos(((JCAssignOp) tree).lhs);
case OR: case AND: case BITOR:
case BITXOR: case BITAND: case EQ:
case NE: case LT: case GT:
case LE: case GE: case SL:
case SR: case USR: case PLUS:
case MINUS: case MUL: case DIV:
case MOD:
return getStartPos(((JCBinary) tree).lhs);
case CLASSDEF: {
JCClassDecl node = (JCClassDecl)tree;
if (node.mods.pos != Position.NOPOS)
return node.mods.pos;
break;
}
case CONDEXPR:
return getStartPos(((JCConditional) tree).cond);
case EXEC:
return getStartPos(((JCExpressionStatement) tree).expr);
case INDEXED:
return getStartPos(((JCArrayAccess) tree).indexed);
case METHODDEF: {
JCMethodDecl node = (JCMethodDecl)tree;
if (node.mods.pos != Position.NOPOS)
return node.mods.pos;
if (node.typarams.nonEmpty()) // List.nil() used for no typarams
return getStartPos(node.typarams.head);
return node.restype == null ? node.pos : getStartPos(node.restype);
}
case SELECT:
return getStartPos(((JCFieldAccess) tree).selected);
case TYPEAPPLY:
return getStartPos(((JCTypeApply) tree).clazz);
case TYPEARRAY:
return getStartPos(((JCArrayTypeTree) tree).elemtype);
case TYPETEST:
return getStartPos(((JCInstanceOf) tree).expr);
case POSTINC:
case POSTDEC:
return getStartPos(((JCUnary) tree).arg);
case ANNOTATED_TYPE: {
JCAnnotatedType node = (JCAnnotatedType) tree;
if (node.annotations.nonEmpty()) {
if (node.underlyingType.hasTag(TYPEARRAY) ||
node.underlyingType.hasTag(SELECT)) {
return getStartPos(node.underlyingType);
} else {
return getStartPos(node.annotations.head);
}
} else {
return getStartPos(node.underlyingType);
}
}
case NEWCLASS: {
JCNewClass node = (JCNewClass)tree;
if (node.encl != null)
return getStartPos(node.encl);
break;
}
case VARDEF: {
JCVariableDecl node = (JCVariableDecl)tree;
if (node.mods.pos != Position.NOPOS) {
return node.mods.pos;
} else if (node.vartype == null) {
//if there's no type (partially typed lambda parameter)
//simply return node position
return node.pos;
} else {
return getStartPos(node.vartype);
}
}
case ERRONEOUS: {
JCErroneous node = (JCErroneous)tree;
if (node.errs != null && node.errs.nonEmpty())
return getStartPos(node.errs.head);
}
}
return tree.pos;
}
/** The end position of given tree, given a table of end positions generated by the parser
*/
public static int getEndPos(JCTree tree, EndPosTable endPosTable) {
if (tree == null)
return Position.NOPOS;
if (endPosTable == null) {
// fall back on limited info in the tree
return endPos(tree);
}
int mapPos = endPosTable.getEndPos(tree);
if (mapPos != Position.NOPOS)
return mapPos;
switch(tree.getTag()) {
case BITOR_ASG: case BITXOR_ASG: case BITAND_ASG:
case SL_ASG: case SR_ASG: case USR_ASG:
case PLUS_ASG: case MINUS_ASG: case MUL_ASG:
case DIV_ASG: case MOD_ASG:
return getEndPos(((JCAssignOp) tree).rhs, endPosTable);
case OR: case AND: case BITOR:
case BITXOR: case BITAND: case EQ:
case NE: case LT: case GT:
case LE: case GE: case SL:
case SR: case USR: case PLUS:
case MINUS: case MUL: case DIV:
case MOD:
return getEndPos(((JCBinary) tree).rhs, endPosTable);
case CASE:
return getEndPos(((JCCase) tree).stats.last(), endPosTable);
case CATCH:
return getEndPos(((JCCatch) tree).body, endPosTable);
case CONDEXPR:
return getEndPos(((JCConditional) tree).falsepart, endPosTable);
case FORLOOP:
return getEndPos(((JCForLoop) tree).body, endPosTable);
case FOREACHLOOP:
return getEndPos(((JCEnhancedForLoop) tree).body, endPosTable);
case IF: {
JCIf node = (JCIf)tree;
if (node.elsepart == null) {
return getEndPos(node.thenpart, endPosTable);
} else {
return getEndPos(node.elsepart, endPosTable);
}
}
case LABELLED:
return getEndPos(((JCLabeledStatement) tree).body, endPosTable);
case MODIFIERS:
return getEndPos(((JCModifiers) tree).annotations.last(), endPosTable);
case SYNCHRONIZED:
return getEndPos(((JCSynchronized) tree).body, endPosTable);
case TOPLEVEL:
return getEndPos(((JCCompilationUnit) tree).defs.last(), endPosTable);
case TRY: {
JCTry node = (JCTry)tree;
if (node.finalizer != null) {
return getEndPos(node.finalizer, endPosTable);
} else if (!node.catchers.isEmpty()) {
return getEndPos(node.catchers.last(), endPosTable);
} else {
return getEndPos(node.body, endPosTable);
}
}
case WILDCARD:
return getEndPos(((JCWildcard) tree).inner, endPosTable);
case TYPECAST:
return getEndPos(((JCTypeCast) tree).expr, endPosTable);
case TYPETEST:
return getEndPos(((JCInstanceOf) tree).clazz, endPosTable);
case POS:
case NEG:
case NOT:
case COMPL:
case PREINC:
case PREDEC:
return getEndPos(((JCUnary) tree).arg, endPosTable);
case WHILELOOP:
return getEndPos(((JCWhileLoop) tree).body, endPosTable);
case ANNOTATED_TYPE:
return getEndPos(((JCAnnotatedType) tree).underlyingType, endPosTable);
case ERRONEOUS: {
JCErroneous node = (JCErroneous)tree;
if (node.errs != null && node.errs.nonEmpty())
return getEndPos(node.errs.last(), endPosTable);
}
}
return Position.NOPOS;
}
/** A DiagnosticPosition with the preferred position set to the
* end position of given tree, if it is a block with
* defined endpos.
*/
public static DiagnosticPosition diagEndPos(final JCTree tree) {
final int endPos = TreeInfo.endPos(tree);
return new DiagnosticPosition() {
public JCTree getTree() { return tree; }
public int getStartPosition() { return TreeInfo.getStartPos(tree); }
public int getPreferredPosition() { return endPos; }
public int getEndPosition(EndPosTable endPosTable) {
return TreeInfo.getEndPos(tree, endPosTable);
}
};
}
/** The position of the finalizer of given try/synchronized statement.
*/
public static int finalizerPos(JCTree tree) {
if (tree.hasTag(TRY)) {
JCTry t = (JCTry) tree;
Assert.checkNonNull(t.finalizer);
return firstStatPos(t.finalizer);
} else if (tree.hasTag(SYNCHRONIZED)) {
return endPos(((JCSynchronized) tree).body);
} else {
throw new AssertionError();
}
}
/** Find the position for reporting an error about a symbol, where
* that symbol is defined somewhere in the given tree. */
public static int positionFor(final Symbol sym, final JCTree tree) {
JCTree decl = declarationFor(sym, tree);
return ((decl != null) ? decl : tree).pos;
}
/** Find the position for reporting an error about a symbol, where
* that symbol is defined somewhere in the given tree. */
public static DiagnosticPosition diagnosticPositionFor(final Symbol sym, final JCTree tree) {
JCTree decl = declarationFor(sym, tree);
return ((decl != null) ? decl : tree).pos();
}
/** Find the declaration for a symbol, where
* that symbol is defined somewhere in the given tree. */
public static JCTree declarationFor(final Symbol sym, final JCTree tree) {
class DeclScanner extends TreeScanner {
JCTree result = null;
public void scan(JCTree tree) {
if (tree!=null && result==null)
tree.accept(this);
}
public void visitTopLevel(JCCompilationUnit that) {
if (that.packge == sym) result = that;
else super.visitTopLevel(that);
}
public void visitClassDef(JCClassDecl that) {
if (that.sym == sym) result = that;
else super.visitClassDef(that);
}
public void visitMethodDef(JCMethodDecl that) {
if (that.sym == sym) result = that;
else super.visitMethodDef(that);
}
public void visitVarDef(JCVariableDecl that) {
if (that.sym == sym) result = that;
else super.visitVarDef(that);
}
public void visitTypeParameter(JCTypeParameter that) {
if (that.type != null && that.type.tsym == sym) result = that;
else super.visitTypeParameter(that);
}
}
DeclScanner s = new DeclScanner();
tree.accept(s);
return s.result;
}
public static Env scopeFor(JCTree node, JCCompilationUnit unit) {
return scopeFor(pathFor(node, unit));
}
public static Env scopeFor(List path) {
// TODO: not implemented yet
throw new UnsupportedOperationException("not implemented yet");
}
public static List pathFor(final JCTree node, final JCCompilationUnit unit) {
class Result extends Error {
static final long serialVersionUID = -5942088234594905625L;
List path;
Result(List path) {
this.path = path;
}
}
class PathFinder extends TreeScanner {
List path = List.nil();
public void scan(JCTree tree) {
if (tree != null) {
path = path.prepend(tree);
if (tree == node)
throw new Result(path);
super.scan(tree);
path = path.tail;
}
}
}
try {
new PathFinder().scan(unit);
} catch (Result result) {
return result.path;
}
return List.nil();
}
/** Return the statement referenced by a label.
* If the label refers to a loop or switch, return that switch
* otherwise return the labelled statement itself
*/
public static JCTree referencedStatement(JCLabeledStatement tree) {
JCTree t = tree;
do t = ((JCLabeledStatement) t).body;
while (t.hasTag(LABELLED));
switch (t.getTag()) {
case DOLOOP: case WHILELOOP: case FORLOOP: case FOREACHLOOP: case SWITCH:
return t;
default:
return tree;
}
}
/** Skip parens and return the enclosed expression
*/
public static JCExpression skipParens(JCExpression tree) {
while (tree.hasTag(PARENS)) {
tree = ((JCParens) tree).expr;
}
return tree;
}
/** Skip parens and return the enclosed expression
*/
public static JCTree skipParens(JCTree tree) {
if (tree.hasTag(PARENS))
return skipParens((JCParens)tree);
else
return tree;
}
/** Return the types of a list of trees.
*/
public static List types(List extends JCTree> trees) {
ListBuffer ts = new ListBuffer();
for (List extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
ts.append(l.head.type);
return ts.toList();
}
/** If this tree is an identifier or a field or a parameterized type,
* return its name, otherwise return null.
*/
public static Name name(JCTree tree) {
switch (tree.getTag()) {
case IDENT:
return ((JCIdent) tree).name;
case SELECT:
return ((JCFieldAccess) tree).name;
case TYPEAPPLY:
return name(((JCTypeApply) tree).clazz);
default:
return null;
}
}
/** If this tree is a qualified identifier, its return fully qualified name,
* otherwise return null.
*/
public static Name fullName(JCTree tree) {
tree = skipParens(tree);
switch (tree.getTag()) {
case IDENT:
return ((JCIdent) tree).name;
case SELECT:
Name sname = fullName(((JCFieldAccess) tree).selected);
return sname == null ? null : sname.append('.', name(tree));
default:
return null;
}
}
public static Symbol symbolFor(JCTree node) {
Symbol sym = symbolForImpl(node);
return sym != null ? sym.baseSymbol() : null;
}
private static Symbol symbolForImpl(JCTree node) {
node = skipParens(node);
switch (node.getTag()) {
case TOPLEVEL:
return ((JCCompilationUnit) node).packge;
case CLASSDEF:
return ((JCClassDecl) node).sym;
case METHODDEF:
return ((JCMethodDecl) node).sym;
case VARDEF:
return ((JCVariableDecl) node).sym;
case IDENT:
return ((JCIdent) node).sym;
case SELECT:
return ((JCFieldAccess) node).sym;
case REFERENCE:
return ((JCMemberReference) node).sym;
case NEWCLASS:
return ((JCNewClass) node).constructor;
case APPLY:
return symbolFor(((JCMethodInvocation) node).meth);
case TYPEAPPLY:
return symbolFor(((JCTypeApply) node).clazz);
case ANNOTATION:
case TYPE_ANNOTATION:
case TYPEPARAMETER:
if (node.type != null)
return node.type.tsym;
return null;
default:
return null;
}
}
public static boolean isDeclaration(JCTree node) {
node = skipParens(node);
switch (node.getTag()) {
case CLASSDEF:
case METHODDEF:
case VARDEF:
return true;
default:
return false;
}
}
/** If this tree is an identifier or a field, return its symbol,
* otherwise return null.
*/
public static Symbol symbol(JCTree tree) {
tree = skipParens(tree);
switch (tree.getTag()) {
case IDENT:
return ((JCIdent) tree).sym;
case SELECT:
return ((JCFieldAccess) tree).sym;
case TYPEAPPLY:
return symbol(((JCTypeApply) tree).clazz);
case ANNOTATED_TYPE:
return symbol(((JCAnnotatedType) tree).underlyingType);
case REFERENCE:
return ((JCMemberReference) tree).sym;
default:
return null;
}
}
/** Return true if this is a nonstatic selection. */
public static boolean nonstaticSelect(JCTree tree) {
tree = skipParens(tree);
if (!tree.hasTag(SELECT)) return false;
JCFieldAccess s = (JCFieldAccess) tree;
Symbol e = symbol(s.selected);
return e == null || (e.kind != Kinds.PCK && e.kind != Kinds.TYP);
}
/** If this tree is an identifier or a field, set its symbol, otherwise skip.
*/
public static void setSymbol(JCTree tree, Symbol sym) {
tree = skipParens(tree);
switch (tree.getTag()) {
case IDENT:
((JCIdent) tree).sym = sym; break;
case SELECT:
((JCFieldAccess) tree).sym = sym; break;
default:
}
}
/** If this tree is a declaration or a block, return its flags field,
* otherwise return 0.
*/
public static long flags(JCTree tree) {
switch (tree.getTag()) {
case VARDEF:
return ((JCVariableDecl) tree).mods.flags;
case METHODDEF:
return ((JCMethodDecl) tree).mods.flags;
case CLASSDEF:
return ((JCClassDecl) tree).mods.flags;
case BLOCK:
return ((JCBlock) tree).flags;
default:
return 0;
}
}
/** Return first (smallest) flag in `flags':
* pre: flags != 0
*/
public static long firstFlag(long flags) {
long flag = 1;
while ((flag & flags & ExtendedStandardFlags) == 0)
flag = flag << 1;
return flag;
}
/** Return flags as a string, separated by " ".
*/
public static String flagNames(long flags) {
return Flags.toString(flags & ExtendedStandardFlags).trim();
}
/** Operator precedences values.
*/
public static final int
notExpression = -1, // not an expression
noPrec = 0, // no enclosing expression
assignPrec = 1,
assignopPrec = 2,
condPrec = 3,
orPrec = 4,
andPrec = 5,
bitorPrec = 6,
bitxorPrec = 7,
bitandPrec = 8,
eqPrec = 9,
ordPrec = 10,
shiftPrec = 11,
addPrec = 12,
mulPrec = 13,
prefixPrec = 14,
postfixPrec = 15,
precCount = 16;
/** Map operators to their precedence levels.
*/
public static int opPrec(JCTree.Tag op) {
switch(op) {
case POS:
case NEG:
case NOT:
case COMPL:
case PREINC:
case PREDEC: return prefixPrec;
case POSTINC:
case POSTDEC:
case NULLCHK: return postfixPrec;
case ASSIGN: return assignPrec;
case BITOR_ASG:
case BITXOR_ASG:
case BITAND_ASG:
case SL_ASG:
case SR_ASG:
case USR_ASG:
case PLUS_ASG:
case MINUS_ASG:
case MUL_ASG:
case DIV_ASG:
case MOD_ASG: return assignopPrec;
case OR: return orPrec;
case AND: return andPrec;
case EQ:
case NE: return eqPrec;
case LT:
case GT:
case LE:
case GE: return ordPrec;
case BITOR: return bitorPrec;
case BITXOR: return bitxorPrec;
case BITAND: return bitandPrec;
case SL:
case SR:
case USR: return shiftPrec;
case PLUS:
case MINUS: return addPrec;
case MUL:
case DIV:
case MOD: return mulPrec;
case TYPETEST: return ordPrec;
default: throw new AssertionError();
}
}
static Tree.Kind tagToKind(JCTree.Tag tag) {
switch (tag) {
// Postfix expressions
case POSTINC: // _ ++
return Tree.Kind.POSTFIX_INCREMENT;
case POSTDEC: // _ --
return Tree.Kind.POSTFIX_DECREMENT;
// Unary operators
case PREINC: // ++ _
return Tree.Kind.PREFIX_INCREMENT;
case PREDEC: // -- _
return Tree.Kind.PREFIX_DECREMENT;
case POS: // +
return Tree.Kind.UNARY_PLUS;
case NEG: // -
return Tree.Kind.UNARY_MINUS;
case COMPL: // ~
return Tree.Kind.BITWISE_COMPLEMENT;
case NOT: // !
return Tree.Kind.LOGICAL_COMPLEMENT;
// Binary operators
// Multiplicative operators
case MUL: // *
return Tree.Kind.MULTIPLY;
case DIV: // /
return Tree.Kind.DIVIDE;
case MOD: // %
return Tree.Kind.REMAINDER;
// Additive operators
case PLUS: // +
return Tree.Kind.PLUS;
case MINUS: // -
return Tree.Kind.MINUS;
// Shift operators
case SL: // <<
return Tree.Kind.LEFT_SHIFT;
case SR: // >>
return Tree.Kind.RIGHT_SHIFT;
case USR: // >>>
return Tree.Kind.UNSIGNED_RIGHT_SHIFT;
// Relational operators
case LT: // <
return Tree.Kind.LESS_THAN;
case GT: // >
return Tree.Kind.GREATER_THAN;
case LE: // <=
return Tree.Kind.LESS_THAN_EQUAL;
case GE: // >=
return Tree.Kind.GREATER_THAN_EQUAL;
// Equality operators
case EQ: // ==
return Tree.Kind.EQUAL_TO;
case NE: // !=
return Tree.Kind.NOT_EQUAL_TO;
// Bitwise and logical operators
case BITAND: // &
return Tree.Kind.AND;
case BITXOR: // ^
return Tree.Kind.XOR;
case BITOR: // |
return Tree.Kind.OR;
// Conditional operators
case AND: // &&
return Tree.Kind.CONDITIONAL_AND;
case OR: // ||
return Tree.Kind.CONDITIONAL_OR;
// Assignment operators
case MUL_ASG: // *=
return Tree.Kind.MULTIPLY_ASSIGNMENT;
case DIV_ASG: // /=
return Tree.Kind.DIVIDE_ASSIGNMENT;
case MOD_ASG: // %=
return Tree.Kind.REMAINDER_ASSIGNMENT;
case PLUS_ASG: // +=
return Tree.Kind.PLUS_ASSIGNMENT;
case MINUS_ASG: // -=
return Tree.Kind.MINUS_ASSIGNMENT;
case SL_ASG: // <<=
return Tree.Kind.LEFT_SHIFT_ASSIGNMENT;
case SR_ASG: // >>=
return Tree.Kind.RIGHT_SHIFT_ASSIGNMENT;
case USR_ASG: // >>>=
return Tree.Kind.UNSIGNED_RIGHT_SHIFT_ASSIGNMENT;
case BITAND_ASG: // &=
return Tree.Kind.AND_ASSIGNMENT;
case BITXOR_ASG: // ^=
return Tree.Kind.XOR_ASSIGNMENT;
case BITOR_ASG: // |=
return Tree.Kind.OR_ASSIGNMENT;
// Null check (implementation detail), for example, __.getClass()
case NULLCHK:
return Tree.Kind.OTHER;
case ANNOTATION:
return Tree.Kind.ANNOTATION;
case TYPE_ANNOTATION:
return Tree.Kind.TYPE_ANNOTATION;
default:
return null;
}
}
/**
* Returns the underlying type of the tree if it is an annotated type,
* or the tree itself otherwise.
*/
public static JCExpression typeIn(JCExpression tree) {
switch (tree.getTag()) {
case ANNOTATED_TYPE:
return ((JCAnnotatedType)tree).underlyingType;
case IDENT: /* simple names */
case TYPEIDENT: /* primitive name */
case SELECT: /* qualified name */
case TYPEARRAY: /* array types */
case WILDCARD: /* wild cards */
case TYPEPARAMETER: /* type parameters */
case TYPEAPPLY: /* parameterized types */
case ERRONEOUS: /* error tree TODO: needed for BadCast JSR308 test case. Better way? */
return tree;
default:
throw new AssertionError("Unexpected type tree: " + tree);
}
}
/* Return the inner-most type of a type tree.
* For an array that contains an annotated type, return that annotated type.
* TODO: currently only used by Pretty. Describe behavior better.
*/
public static JCTree innermostType(JCTree type) {
JCTree lastAnnotatedType = null;
JCTree cur = type;
loop: while (true) {
switch (cur.getTag()) {
case TYPEARRAY:
lastAnnotatedType = null;
cur = ((JCArrayTypeTree)cur).elemtype;
break;
case WILDCARD:
lastAnnotatedType = null;
cur = ((JCWildcard)cur).inner;
break;
case ANNOTATED_TYPE:
lastAnnotatedType = cur;
cur = ((JCAnnotatedType)cur).underlyingType;
break;
default:
break loop;
}
}
if (lastAnnotatedType!=null) {
return lastAnnotatedType;
} else {
return cur;
}
}
private static class TypeAnnotationFinder extends TreeScanner {
public boolean foundTypeAnno = false;
@Override
public void scan(JCTree tree) {
if (foundTypeAnno || tree == null)
return;
super.scan(tree);
}
public void visitAnnotation(JCAnnotation tree) {
foundTypeAnno = foundTypeAnno || tree.hasTag(TYPE_ANNOTATION);
}
}
public static boolean containsTypeAnnotation(JCTree e) {
TypeAnnotationFinder finder = new TypeAnnotationFinder();
finder.scan(e);
return finder.foundTypeAnno;
}
}