org.antlr.runtime.tree.BaseTree Maven / Gradle / Ivy
/*
[The "BSD license"]
Copyright (c) 2005-2009 Terence Parr
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.antlr.runtime.tree;
import java.util.ArrayList;
import java.util.List;
/** A generic tree implementation with no payload. You must subclass to
* actually have any user data. ANTLR v3 uses a list of children approach
* instead of the child-sibling approach in v2. A flat tree (a list) is
* an empty node whose children represent the list. An empty, but
* non-null node is called "nil".
*/
public abstract class BaseTree implements Tree {
protected List children;
public BaseTree() {
}
/** Create a new node from an existing node does nothing for BaseTree
* as there are no fields other than the children list, which cannot
* be copied as the children are not considered part of this node.
*/
public BaseTree(Tree node) {
}
public Tree getChild(int i) {
if ( children==null || i>=children.size() ) {
return null;
}
return (Tree)children.get(i);
}
/** Get the children internal List; note that if you directly mess with
* the list, do so at your own risk.
*/
public List getChildren() {
return children;
}
public Tree getFirstChildWithType(int type) {
for (int i = 0; children!=null && i < children.size(); i++) {
Tree t = (Tree) children.get(i);
if ( t.getType()==type ) {
return t;
}
}
return null;
}
public int getChildCount() {
if ( children==null ) {
return 0;
}
return children.size();
}
/** Add t as child of this node.
*
* Warning: if t has no children, but child does
* and child isNil then this routine moves children to t via
* t.children = child.children; i.e., without copying the array.
*/
public void addChild(Tree t) {
//System.out.println("add child "+t.toStringTree()+" "+this.toStringTree());
//System.out.println("existing children: "+children);
if ( t==null ) {
return; // do nothing upon addChild(null)
}
BaseTree childTree = (BaseTree)t;
if ( childTree.isNil() ) { // t is an empty node possibly with children
if ( this.children!=null && this.children == childTree.children ) {
throw new RuntimeException("attempt to add child list to itself");
}
// just add all of childTree's children to this
if ( childTree.children!=null ) {
if ( this.children!=null ) { // must copy, this has children already
int n = childTree.children.size();
for (int i = 0; i < n; i++) {
Tree c = (Tree)childTree.children.get(i);
this.children.add(c);
// handle double-link stuff for each child of nil root
c.setParent(this);
c.setChildIndex(children.size()-1);
}
}
else {
// no children for this but t has children; just set pointer
// call general freshener routine
this.children = childTree.children;
this.freshenParentAndChildIndexes();
}
}
}
else { // child is not nil (don't care about children)
if ( children==null ) {
children = createChildrenList(); // create children list on demand
}
children.add(t);
childTree.setParent(this);
childTree.setChildIndex(children.size()-1);
}
// System.out.println("now children are: "+children);
}
/** Add all elements of kids list as children of this node */
public void addChildren(List kids) {
for (int i = 0; i < kids.size(); i++) {
Tree t = (Tree) kids.get(i);
addChild(t);
}
}
public void setChild(int i, Tree t) {
if ( t==null ) {
return;
}
if ( t.isNil() ) {
throw new IllegalArgumentException("Can't set single child to a list");
}
if ( children==null ) {
children = createChildrenList();
}
children.set(i, t);
t.setParent(this);
t.setChildIndex(i);
}
/** Insert child t at child position i (0..n-1) by shifting children
i+1..n-1 to the right one position. Set parent / indexes properly
but does NOT collapse nil-rooted t's that come in here like addChild.
*/
public void insertChild(int i, Object t) {
if ( children==null ) return;
children.add(i, t);
// walk others to increment their child indexes
// set index, parent of this one too
this.freshenParentAndChildIndexes(i);
}
public Object deleteChild(int i) {
if ( children==null ) {
return null;
}
Tree killed = (Tree)children.remove(i);
// walk rest and decrement their child indexes
this.freshenParentAndChildIndexes(i);
return killed;
}
/** Delete children from start to stop and replace with t even if t is
* a list (nil-root tree). num of children can increase or decrease.
* For huge child lists, inserting children can force walking rest of
* children to set their childindex; could be slow.
*/
public void replaceChildren(int startChildIndex, int stopChildIndex, Object t) {
/*
System.out.println("replaceChildren "+startChildIndex+", "+stopChildIndex+
" with "+((BaseTree)t).toStringTree());
System.out.println("in="+toStringTree());
*/
if ( children==null ) {
throw new IllegalArgumentException("indexes invalid; no children in list");
}
int replacingHowMany = stopChildIndex - startChildIndex + 1;
int replacingWithHowMany;
BaseTree newTree = (BaseTree)t;
List newChildren = null;
// normalize to a list of children to add: newChildren
if ( newTree.isNil() ) {
newChildren = newTree.children;
}
else {
newChildren = new ArrayList(1);
newChildren.add(newTree);
}
replacingWithHowMany = newChildren.size();
int numNewChildren = newChildren.size();
int delta = replacingHowMany - replacingWithHowMany;
// if same number of nodes, do direct replace
if ( delta == 0 ) {
int j = 0; // index into new children
for (int i=startChildIndex; i<=stopChildIndex; i++) {
BaseTree child = (BaseTree)newChildren.get(j);
children.set(i, child);
child.setParent(this);
child.setChildIndex(i);
j++;
}
}
else if ( delta > 0 ) { // fewer new nodes than there were
// set children and then delete extra
for (int j=0; j0 ) {
buf.append(' ');
}
buf.append(t.toStringTree());
}
if ( !isNil() ) {
buf.append(")");
}
return buf.toString();
}
public int getLine() {
return 0;
}
public int getCharPositionInLine() {
return 0;
}
/** Override to say how a node (not a tree) should look as text */
public abstract String toString();
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy