All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.collect.Lists Maven / Gradle / Ivy

There is a newer version: 33.1.0.2-jre
Show newest version
/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import org.checkerframework.dataflow.qual.Pure;
import org.checkerframework.framework.qual.AnnotatedFor;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkElementIndex;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndex;
import static com.google.common.base.Preconditions.checkPositionIndexes;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.collect.CollectPreconditions.checkNonnegative;
import static com.google.common.collect.CollectPreconditions.checkRemove;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Function;
import com.google.common.base.Objects;
import com.google.common.math.IntMath;
import com.google.common.primitives.Ints;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import java.io.Serializable;
import java.math.RoundingMode;
import java.util.AbstractList;
import java.util.AbstractSequentialList;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import java.util.RandomAccess;
import java.util.concurrent.CopyOnWriteArrayList;
import java.util.function.Predicate;
import org.checkerframework.checker.nullness.compatqual.NullableDecl;

/**
 * Static utility methods pertaining to {@link List} instances. Also see this class's counterparts
 * {@link Sets}, {@link Maps} and {@link Queues}.
 *
 * 

See the Guava User Guide article on {@code Lists}. * * @author Kevin Bourrillion * @author Mike Bostock * @author Louis Wasserman * @since 2.0 */ @AnnotatedFor({"nullness"}) @GwtCompatible(emulated = true) public final class Lists { private Lists() {} // ArrayList /** * Creates a mutable, empty {@code ArrayList} instance (for Java 6 and earlier). * *

Note: if mutability is not required, use {@link ImmutableList#of()} instead. * *

Note for Java 7 and later: this method is now unnecessary and should be treated as * deprecated. Instead, use the {@code ArrayList} {@linkplain ArrayList#ArrayList() constructor} * directly, taking advantage of the new "diamond" syntax. */ @GwtCompatible(serializable = true) public static ArrayList newArrayList() { return new ArrayList<>(); } /** * Creates a mutable {@code ArrayList} instance containing the given elements. * *

Note: essentially the only reason to use this method is when you will need to add or * remove elements later. Otherwise, for non-null elements use {@link ImmutableList#of()} (for * varargs) or {@link ImmutableList#copyOf(Object[])} (for an array) instead. If any elements * might be null, or you need support for {@link List#set(int, Object)}, use {@link * Arrays#asList}. * *

Note that even when you do need the ability to add or remove, this method provides only a * tiny bit of syntactic sugar for {@code newArrayList(}{@link Arrays#asList asList}{@code * (...))}, or for creating an empty list then calling {@link Collections#addAll}. This method is * not actually very useful and will likely be deprecated in the future. */ @SafeVarargs @CanIgnoreReturnValue // TODO(kak): Remove this @GwtCompatible(serializable = true) public static ArrayList newArrayList(E... elements) { checkNotNull(elements); // for GWT // Avoid integer overflow when a large array is passed in int capacity = computeArrayListCapacity(elements.length); ArrayList list = new ArrayList<>(capacity); Collections.addAll(list, elements); return list; } /** * Creates a mutable {@code ArrayList} instance containing the given elements; a very thin * shortcut for creating an empty list then calling {@link Iterables#addAll}. * *

Note: if mutability is not required and the elements are non-null, use {@link * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link * FluentIterable} and call {@code elements.toList()}.) * *

Note for Java 7 and later: if {@code elements} is a {@link Collection}, you don't * need this method. Use the {@code ArrayList} {@linkplain ArrayList#ArrayList(Collection) * constructor} directly, taking advantage of the new "diamond" * syntax. */ @CanIgnoreReturnValue // TODO(kak): Remove this @GwtCompatible(serializable = true) public static ArrayList newArrayList(Iterable elements) { checkNotNull(elements); // for GWT // Let ArrayList's sizing logic work, if possible return (elements instanceof Collection) ? new ArrayList<>(Collections2.cast(elements)) : newArrayList(elements.iterator()); } /** * Creates a mutable {@code ArrayList} instance containing the given elements; a very thin * shortcut for creating an empty list and then calling {@link Iterators#addAll}. * *

Note: if mutability is not required and the elements are non-null, use {@link * ImmutableList#copyOf(Iterator)} instead. */ @CanIgnoreReturnValue // TODO(kak): Remove this @GwtCompatible(serializable = true) public static ArrayList newArrayList(Iterator elements) { ArrayList list = newArrayList(); Iterators.addAll(list, elements); return list; } @VisibleForTesting static int computeArrayListCapacity(int arraySize) { checkNonnegative(arraySize, "arraySize"); // TODO(kevinb): Figure out the right behavior, and document it return Ints.saturatedCast(5L + arraySize + (arraySize / 10)); } /** * Creates an {@code ArrayList} instance backed by an array with the specified initial size; * simply delegates to {@link ArrayList#ArrayList(int)}. * *

Note for Java 7 and later: this method is now unnecessary and should be treated as * deprecated. Instead, use {@code new }{@link ArrayList#ArrayList(int) ArrayList}{@code <>(int)} * directly, taking advantage of the new "diamond" syntax. * (Unlike here, there is no risk of overload ambiguity, since the {@code ArrayList} constructors * very wisely did not accept varargs.) * * @param initialArraySize the exact size of the initial backing array for the returned array list * ({@code ArrayList} documentation calls this value the "capacity") * @return a new, empty {@code ArrayList} which is guaranteed not to resize itself unless its size * reaches {@code initialArraySize + 1} * @throws IllegalArgumentException if {@code initialArraySize} is negative */ @GwtCompatible(serializable = true) public static ArrayList newArrayListWithCapacity(int initialArraySize) { checkNonnegative(initialArraySize, "initialArraySize"); // for GWT. return new ArrayList<>(initialArraySize); } /** * Creates an {@code ArrayList} instance to hold {@code estimatedSize} elements, plus an * unspecified amount of padding; you almost certainly mean to call {@link * #newArrayListWithCapacity} (see that method for further advice on usage). * *

Note: This method will soon be deprecated. Even in the rare case that you do want * some amount of padding, it's best if you choose your desired amount explicitly. * * @param estimatedSize an estimate of the eventual {@link List#size()} of the new list * @return a new, empty {@code ArrayList}, sized appropriately to hold the estimated number of * elements * @throws IllegalArgumentException if {@code estimatedSize} is negative */ @GwtCompatible(serializable = true) public static ArrayList newArrayListWithExpectedSize(int estimatedSize) { return new ArrayList<>(computeArrayListCapacity(estimatedSize)); } // LinkedList /** * Creates a mutable, empty {@code LinkedList} instance (for Java 6 and earlier). * *

Note: if you won't be adding any elements to the list, use {@link ImmutableList#of()} * instead. * *

Performance note: {@link ArrayList} and {@link java.util.ArrayDeque} consistently * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have * spent a lot of time benchmarking your specific needs, use one of those instead. * *

Note for Java 7 and later: this method is now unnecessary and should be treated as * deprecated. Instead, use the {@code LinkedList} {@linkplain LinkedList#LinkedList() * constructor} directly, taking advantage of the new "diamond" * syntax. */ @GwtCompatible(serializable = true) public static LinkedList newLinkedList() { return new LinkedList<>(); } /** * Creates a mutable {@code LinkedList} instance containing the given elements; a very thin * shortcut for creating an empty list then calling {@link Iterables#addAll}. * *

Note: if mutability is not required and the elements are non-null, use {@link * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link * FluentIterable} and call {@code elements.toList()}.) * *

Performance note: {@link ArrayList} and {@link java.util.ArrayDeque} consistently * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have * spent a lot of time benchmarking your specific needs, use one of those instead. * *

Note for Java 7 and later: if {@code elements} is a {@link Collection}, you don't * need this method. Use the {@code LinkedList} {@linkplain LinkedList#LinkedList(Collection) * constructor} directly, taking advantage of the new "diamond" * syntax. */ @GwtCompatible(serializable = true) public static LinkedList newLinkedList(Iterable elements) { LinkedList list = newLinkedList(); Iterables.addAll(list, elements); return list; } /** * Creates an empty {@code CopyOnWriteArrayList} instance. * *

Note: if you need an immutable empty {@link List}, use {@link Collections#emptyList} * instead. * * @return a new, empty {@code CopyOnWriteArrayList} * @since 12.0 */ @GwtIncompatible // CopyOnWriteArrayList public static CopyOnWriteArrayList newCopyOnWriteArrayList() { return new CopyOnWriteArrayList<>(); } /** * Creates a {@code CopyOnWriteArrayList} instance containing the given elements. * * @param elements the elements that the list should contain, in order * @return a new {@code CopyOnWriteArrayList} containing those elements * @since 12.0 */ @GwtIncompatible // CopyOnWriteArrayList public static CopyOnWriteArrayList newCopyOnWriteArrayList( Iterable elements) { // We copy elements to an ArrayList first, rather than incurring the // quadratic cost of adding them to the COWAL directly. Collection elementsCollection = (elements instanceof Collection) ? Collections2.cast(elements) : newArrayList(elements); return new CopyOnWriteArrayList<>(elementsCollection); } /** * Returns an unmodifiable list containing the specified first element and backed by the specified * array of additional elements. Changes to the {@code rest} array will be reflected in the * returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable. * *

This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo, * Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum argument count. * *

The returned list is serializable and implements {@link RandomAccess}. * * @param first the first element * @param rest an array of additional elements, possibly empty * @return an unmodifiable list containing the specified elements */ public static List asList(@NullableDecl E first, E[] rest) { return new OnePlusArrayList<>(first, rest); } /** * Returns an unmodifiable list containing the specified first and second element, and backed by * the specified array of additional elements. Changes to the {@code rest} array will be reflected * in the returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable. * *

This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo, * Foo secondFoo, Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum * argument count. * *

The returned list is serializable and implements {@link RandomAccess}. * * @param first the first element * @param second the second element * @param rest an array of additional elements, possibly empty * @return an unmodifiable list containing the specified elements */ public static List asList(@NullableDecl E first, @NullableDecl E second, E[] rest) { return new TwoPlusArrayList<>(first, second, rest); } /** @see Lists#asList(Object, Object[]) */ private static class OnePlusArrayList extends AbstractList implements Serializable, RandomAccess { @NullableDecl final E first; final E[] rest; OnePlusArrayList(@NullableDecl E first, E[] rest) { this.first = first; this.rest = checkNotNull(rest); } @Pure @Override public int size() { return IntMath.saturatedAdd(rest.length, 1); } @Override public E get(int index) { // check explicitly so the IOOBE will have the right message checkElementIndex(index, size()); return (index == 0) ? first : rest[index - 1]; } private static final long serialVersionUID = 0; } /** @see Lists#asList(Object, Object, Object[]) */ private static class TwoPlusArrayList extends AbstractList implements Serializable, RandomAccess { @NullableDecl final E first; @NullableDecl final E second; final E[] rest; TwoPlusArrayList(@NullableDecl E first, @NullableDecl E second, E[] rest) { this.first = first; this.second = second; this.rest = checkNotNull(rest); } @Pure @Override public int size() { return IntMath.saturatedAdd(rest.length, 2); } @Override public E get(int index) { switch (index) { case 0: return first; case 1: return second; default: // check explicitly so the IOOBE will have the right message checkElementIndex(index, size()); return rest[index - 2]; } } private static final long serialVersionUID = 0; } /** * Returns every possible list that can be formed by choosing one element from each of the given * lists in order; the "n-ary Cartesian * product" of the lists. For example: * *

{@code
   * Lists.cartesianProduct(ImmutableList.of(
   *     ImmutableList.of(1, 2),
   *     ImmutableList.of("A", "B", "C")))
   * }
* *

returns a list containing six lists in the following order: * *

    *
  • {@code ImmutableList.of(1, "A")} *
  • {@code ImmutableList.of(1, "B")} *
  • {@code ImmutableList.of(1, "C")} *
  • {@code ImmutableList.of(2, "A")} *
  • {@code ImmutableList.of(2, "B")} *
  • {@code ImmutableList.of(2, "C")} *
* *

The result is guaranteed to be in the "traditional", lexicographical order for Cartesian * products that you would get from nesting for loops: * *

{@code
   * for (B b0 : lists.get(0)) {
   *   for (B b1 : lists.get(1)) {
   *     ...
   *     ImmutableList tuple = ImmutableList.of(b0, b1, ...);
   *     // operate on tuple
   *   }
   * }
   * }
* *

Note that if any input list is empty, the Cartesian product will also be empty. If no lists * at all are provided (an empty list), the resulting Cartesian product has one element, an empty * list (counter-intuitive, but mathematically consistent). * *

Performance notes: while the cartesian product of lists of size {@code m, n, p} is a * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the * cartesian product is constructed, the input lists are merely copied. Only as the resulting list * is iterated are the individual lists created, and these are not retained after iteration. * * @param lists the lists to choose elements from, in the order that the elements chosen from * those lists should appear in the resulting lists * @param any common base class shared by all axes (often just {@link Object}) * @return the Cartesian product, as an immutable list containing immutable lists * @throws IllegalArgumentException if the size of the cartesian product would be greater than * {@link Integer#MAX_VALUE} * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of * a provided list is null * @since 19.0 */ public static List> cartesianProduct(List> lists) { return CartesianList.create(lists); } /** * Returns every possible list that can be formed by choosing one element from each of the given * lists in order; the "n-ary Cartesian * product" of the lists. For example: * *

{@code
   * Lists.cartesianProduct(ImmutableList.of(
   *     ImmutableList.of(1, 2),
   *     ImmutableList.of("A", "B", "C")))
   * }
* *

returns a list containing six lists in the following order: * *

    *
  • {@code ImmutableList.of(1, "A")} *
  • {@code ImmutableList.of(1, "B")} *
  • {@code ImmutableList.of(1, "C")} *
  • {@code ImmutableList.of(2, "A")} *
  • {@code ImmutableList.of(2, "B")} *
  • {@code ImmutableList.of(2, "C")} *
* *

The result is guaranteed to be in the "traditional", lexicographical order for Cartesian * products that you would get from nesting for loops: * *

{@code
   * for (B b0 : lists.get(0)) {
   *   for (B b1 : lists.get(1)) {
   *     ...
   *     ImmutableList tuple = ImmutableList.of(b0, b1, ...);
   *     // operate on tuple
   *   }
   * }
   * }
* *

Note that if any input list is empty, the Cartesian product will also be empty. If no lists * at all are provided (an empty list), the resulting Cartesian product has one element, an empty * list (counter-intuitive, but mathematically consistent). * *

Performance notes: while the cartesian product of lists of size {@code m, n, p} is a * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the * cartesian product is constructed, the input lists are merely copied. Only as the resulting list * is iterated are the individual lists created, and these are not retained after iteration. * * @param lists the lists to choose elements from, in the order that the elements chosen from * those lists should appear in the resulting lists * @param any common base class shared by all axes (often just {@link Object}) * @return the Cartesian product, as an immutable list containing immutable lists * @throws IllegalArgumentException if the size of the cartesian product would be greater than * {@link Integer#MAX_VALUE} * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of * a provided list is null * @since 19.0 */ @SafeVarargs public static List> cartesianProduct(List... lists) { return cartesianProduct(Arrays.asList(lists)); } /** * Returns a list that applies {@code function} to each element of {@code fromList}. The returned * list is a transformed view of {@code fromList}; changes to {@code fromList} will be reflected * in the returned list and vice versa. * *

Since functions are not reversible, the transform is one-way and new items cannot be stored * in the returned list. The {@code add}, {@code addAll} and {@code set} methods are unsupported * in the returned list. * *

The function is applied lazily, invoked when needed. This is necessary for the returned list * to be a view, but it means that the function will be applied many times for bulk operations * like {@link List#contains} and {@link List#hashCode}. For this to perform well, {@code * function} should be fast. To avoid lazy evaluation when the returned list doesn't need to be a * view, copy the returned list into a new list of your choosing. * *

If {@code fromList} implements {@link RandomAccess}, so will the returned list. The returned * list is threadsafe if the supplied list and function are. * *

If only a {@code Collection} or {@code Iterable} input is available, use {@link * Collections2#transform} or {@link Iterables#transform}. * *

Note: serializing the returned list is implemented by serializing {@code fromList}, * its contents, and {@code function} -- not by serializing the transformed values. This * can lead to surprising behavior, so serializing the returned list is not recommended. * Instead, copy the list using {@link ImmutableList#copyOf(Collection)} (for example), then * serialize the copy. Other methods similar to this do not implement serialization at all for * this reason. * *

Java 8 users: many use cases for this method are better addressed by {@link * java.util.stream.Stream#map}. This method is not being deprecated, but we gently encourage you * to migrate to streams. */ public static List transform( List fromList, Function function) { return (fromList instanceof RandomAccess) ? new TransformingRandomAccessList<>(fromList, function) : new TransformingSequentialList<>(fromList, function); } /** * Implementation of a sequential transforming list. * * @see Lists#transform */ private static class TransformingSequentialList extends AbstractSequentialList implements Serializable { final List fromList; final Function function; TransformingSequentialList(List fromList, Function function) { this.fromList = checkNotNull(fromList); this.function = checkNotNull(function); } /** * The default implementation inherited is based on iteration and removal of each element which * can be overkill. That's why we forward this call directly to the backing list. */ @Override public void clear() { fromList.clear(); } @Pure @Override public int size() { return fromList.size(); } @Override public ListIterator listIterator(final int index) { return new TransformedListIterator(fromList.listIterator(index)) { @Override T transform(F from) { return function.apply(from); } }; } @Override public boolean removeIf(Predicate filter) { checkNotNull(filter); return fromList.removeIf(element -> filter.test(function.apply(element))); } private static final long serialVersionUID = 0; } /** * Implementation of a transforming random access list. We try to make as many of these methods * pass-through to the source list as possible so that the performance characteristics of the * source list and transformed list are similar. * * @see Lists#transform */ private static class TransformingRandomAccessList extends AbstractList implements RandomAccess, Serializable { final List fromList; final Function function; TransformingRandomAccessList(List fromList, Function function) { this.fromList = checkNotNull(fromList); this.function = checkNotNull(function); } @Override public void clear() { fromList.clear(); } @Override public T get(int index) { return function.apply(fromList.get(index)); } @Override public Iterator iterator() { return listIterator(); } @Override public ListIterator listIterator(int index) { return new TransformedListIterator(fromList.listIterator(index)) { @Override T transform(F from) { return function.apply(from); } }; } @Pure @Override public boolean isEmpty() { return fromList.isEmpty(); } @Override public boolean removeIf(Predicate filter) { checkNotNull(filter); return fromList.removeIf(element -> filter.test(function.apply(element))); } @Override public T remove(int index) { return function.apply(fromList.remove(index)); } @Pure @Override public int size() { return fromList.size(); } private static final long serialVersionUID = 0; } /** * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, each of the same * size (the final list may be smaller). For example, partitioning a list containing {@code [a, b, * c, d, e]} with a partition size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list * containing two inner lists of three and two elements, all in the original order. * *

The outer list is unmodifiable, but reflects the latest state of the source list. The inner * lists are sublist views of the original list, produced on demand using {@link List#subList(int, * int)}, and are subject to all the usual caveats about modification as explained in that API. * * @param list the list to return consecutive sublists of * @param size the desired size of each sublist (the last may be smaller) * @return a list of consecutive sublists * @throws IllegalArgumentException if {@code partitionSize} is nonpositive */ public static List> partition(List list, int size) { checkNotNull(list); checkArgument(size > 0); return (list instanceof RandomAccess) ? new RandomAccessPartition<>(list, size) : new Partition<>(list, size); } private static class Partition extends AbstractList> { final List list; final int size; Partition(List list, int size) { this.list = list; this.size = size; } @Override public List get(int index) { checkElementIndex(index, size()); int start = index * size; int end = Math.min(start + size, list.size()); return list.subList(start, end); } @Pure @Override public int size() { return IntMath.divide(list.size(), size, RoundingMode.CEILING); } @Pure @Override public boolean isEmpty() { return list.isEmpty(); } } private static class RandomAccessPartition extends Partition implements RandomAccess { RandomAccessPartition(List list, int size) { super(list, size); } } /** * Returns a view of the specified string as an immutable list of {@code Character} values. * * @since 7.0 */ public static ImmutableList charactersOf(String string) { return new StringAsImmutableList(checkNotNull(string)); } /** * Returns a view of the specified {@code CharSequence} as a {@code List}, viewing * {@code sequence} as a sequence of Unicode code units. The view does not support any * modification operations, but reflects any changes to the underlying character sequence. * * @param sequence the character sequence to view as a {@code List} of characters * @return an {@code List} view of the character sequence * @since 7.0 */ @Beta public static List charactersOf(CharSequence sequence) { return new CharSequenceAsList(checkNotNull(sequence)); } @SuppressWarnings("serial") // serialized using ImmutableList serialization private static final class StringAsImmutableList extends ImmutableList { private final String string; StringAsImmutableList(String string) { this.string = string; } @Override public int indexOf(@NullableDecl Object object) { return (object instanceof Character) ? string.indexOf((Character) object) : -1; } @Override public int lastIndexOf(@NullableDecl Object object) { return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1; } @Override public ImmutableList subList(int fromIndex, int toIndex) { checkPositionIndexes(fromIndex, toIndex, size()); // for GWT return charactersOf(string.substring(fromIndex, toIndex)); } @Override boolean isPartialView() { return false; } @Override public Character get(int index) { checkElementIndex(index, size()); // for GWT return string.charAt(index); } @Override public int size() { return string.length(); } } private static final class CharSequenceAsList extends AbstractList { private final CharSequence sequence; CharSequenceAsList(CharSequence sequence) { this.sequence = sequence; } @Override public Character get(int index) { checkElementIndex(index, size()); // for GWT return sequence.charAt(index); } @Override public int size() { return sequence.length(); } } /** * Returns a reversed view of the specified list. For example, {@code * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 2, 1}. The returned * list is backed by this list, so changes in the returned list are reflected in this list, and * vice-versa. The returned list supports all of the optional list operations supported by this * list. * *

The returned list is random-access if the specified list is random access. * * @since 7.0 */ public static List reverse(List list) { if (list instanceof ImmutableList) { return ((ImmutableList) list).reverse(); } else if (list instanceof ReverseList) { return ((ReverseList) list).getForwardList(); } else if (list instanceof RandomAccess) { return new RandomAccessReverseList<>(list); } else { return new ReverseList<>(list); } } private static class ReverseList extends AbstractList { private final List forwardList; ReverseList(List forwardList) { this.forwardList = checkNotNull(forwardList); } List getForwardList() { return forwardList; } private int reverseIndex(int index) { int size = size(); checkElementIndex(index, size); return (size - 1) - index; } private int reversePosition(int index) { int size = size(); checkPositionIndex(index, size); return size - index; } @Override public void add(int index, @NullableDecl T element) { forwardList.add(reversePosition(index), element); } @Override public void clear() { forwardList.clear(); } @Override public T remove(int index) { return forwardList.remove(reverseIndex(index)); } @Override protected void removeRange(int fromIndex, int toIndex) { subList(fromIndex, toIndex).clear(); } @Override public T set(int index, @NullableDecl T element) { return forwardList.set(reverseIndex(index), element); } @Override public T get(int index) { return forwardList.get(reverseIndex(index)); } @Override public int size() { return forwardList.size(); } @Override public List subList(int fromIndex, int toIndex) { checkPositionIndexes(fromIndex, toIndex, size()); return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex))); } @Override public Iterator iterator() { return listIterator(); } @Override public ListIterator listIterator(int index) { int start = reversePosition(index); final ListIterator forwardIterator = forwardList.listIterator(start); return new ListIterator() { boolean canRemoveOrSet; @Override public void add(T e) { forwardIterator.add(e); forwardIterator.previous(); canRemoveOrSet = false; } @Override public boolean hasNext() { return forwardIterator.hasPrevious(); } @Override public boolean hasPrevious() { return forwardIterator.hasNext(); } @Override public T next() { if (!hasNext()) { throw new NoSuchElementException(); } canRemoveOrSet = true; return forwardIterator.previous(); } @Override public int nextIndex() { return reversePosition(forwardIterator.nextIndex()); } @Override public T previous() { if (!hasPrevious()) { throw new NoSuchElementException(); } canRemoveOrSet = true; return forwardIterator.next(); } @Override public int previousIndex() { return nextIndex() - 1; } @Override public void remove() { checkRemove(canRemoveOrSet); forwardIterator.remove(); canRemoveOrSet = false; } @Override public void set(T e) { checkState(canRemoveOrSet); forwardIterator.set(e); } }; } } private static class RandomAccessReverseList extends ReverseList implements RandomAccess { RandomAccessReverseList(List forwardList) { super(forwardList); } } /** An implementation of {@link List#hashCode()}. */ static int hashCodeImpl(List list) { // TODO(lowasser): worth optimizing for RandomAccess? int hashCode = 1; for (Object o : list) { hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode()); hashCode = ~~hashCode; // needed to deal with GWT integer overflow } return hashCode; } /** An implementation of {@link List#equals(Object)}. */ static boolean equalsImpl(List thisList, @NullableDecl Object other) { if (other == checkNotNull(thisList)) { return true; } if (!(other instanceof List)) { return false; } List otherList = (List) other; int size = thisList.size(); if (size != otherList.size()) { return false; } if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) { // avoid allocation and use the faster loop for (int i = 0; i < size; i++) { if (!Objects.equal(thisList.get(i), otherList.get(i))) { return false; } } return true; } else { return Iterators.elementsEqual(thisList.iterator(), otherList.iterator()); } } /** An implementation of {@link List#addAll(int, Collection)}. */ static boolean addAllImpl(List list, int index, Iterable elements) { boolean changed = false; ListIterator listIterator = list.listIterator(index); for (E e : elements) { listIterator.add(e); changed = true; } return changed; } /** An implementation of {@link List#indexOf(Object)}. */ static int indexOfImpl(List list, @NullableDecl Object element) { if (list instanceof RandomAccess) { return indexOfRandomAccess(list, element); } else { ListIterator listIterator = list.listIterator(); while (listIterator.hasNext()) { if (Objects.equal(element, listIterator.next())) { return listIterator.previousIndex(); } } return -1; } } private static int indexOfRandomAccess(List list, @NullableDecl Object element) { int size = list.size(); if (element == null) { for (int i = 0; i < size; i++) { if (list.get(i) == null) { return i; } } } else { for (int i = 0; i < size; i++) { if (element.equals(list.get(i))) { return i; } } } return -1; } /** An implementation of {@link List#lastIndexOf(Object)}. */ static int lastIndexOfImpl(List list, @NullableDecl Object element) { if (list instanceof RandomAccess) { return lastIndexOfRandomAccess(list, element); } else { ListIterator listIterator = list.listIterator(list.size()); while (listIterator.hasPrevious()) { if (Objects.equal(element, listIterator.previous())) { return listIterator.nextIndex(); } } return -1; } } private static int lastIndexOfRandomAccess(List list, @NullableDecl Object element) { if (element == null) { for (int i = list.size() - 1; i >= 0; i--) { if (list.get(i) == null) { return i; } } } else { for (int i = list.size() - 1; i >= 0; i--) { if (element.equals(list.get(i))) { return i; } } } return -1; } /** Returns an implementation of {@link List#listIterator(int)}. */ static ListIterator listIteratorImpl(List list, int index) { return new AbstractListWrapper<>(list).listIterator(index); } /** An implementation of {@link List#subList(int, int)}. */ static List subListImpl(final List list, int fromIndex, int toIndex) { List wrapper; if (list instanceof RandomAccess) { wrapper = new RandomAccessListWrapper(list) { @Override public ListIterator listIterator(int index) { return backingList.listIterator(index); } private static final long serialVersionUID = 0; }; } else { wrapper = new AbstractListWrapper(list) { @Override public ListIterator listIterator(int index) { return backingList.listIterator(index); } private static final long serialVersionUID = 0; }; } return wrapper.subList(fromIndex, toIndex); } private static class AbstractListWrapper extends AbstractList { final List backingList; AbstractListWrapper(List backingList) { this.backingList = checkNotNull(backingList); } @Override public void add(int index, E element) { backingList.add(index, element); } @Override public boolean addAll(int index, Collection c) { return backingList.addAll(index, c); } @Override public E get(int index) { return backingList.get(index); } @Override public E remove(int index) { return backingList.remove(index); } @Override public E set(int index, E element) { return backingList.set(index, element); } @Override public boolean contains(Object o) { return backingList.contains(o); } @Override public int size() { return backingList.size(); } } private static class RandomAccessListWrapper extends AbstractListWrapper implements RandomAccess { RandomAccessListWrapper(List backingList) { super(backingList); } } /** Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */ static List cast(Iterable iterable) { return (List) iterable; } }