All Downloads are FREE. Search and download functionalities are using the official Maven repository.

dataflow.src.org.checkerframework.dataflow.cfg.ControlFlowGraph Maven / Gradle / Ivy

Go to download

The Checker Framework enhances Java’s type system to make it more powerful and useful. This lets software developers detect and prevent errors in their Java programs. The Checker Framework includes compiler plug-ins ("checkers") that find bugs or verify their absence. It also permits you to write your own compiler plug-ins.

There is a newer version: 3.42.0
Show newest version
package org.checkerframework.dataflow.cfg;

/*>>>
import org.checkerframework.checker.nullness.qual.Nullable;
*/

import org.checkerframework.dataflow.cfg.block.Block;
import org.checkerframework.dataflow.cfg.block.Block.BlockType;
import org.checkerframework.dataflow.cfg.block.ConditionalBlock;
import org.checkerframework.dataflow.cfg.block.ExceptionBlock;
import org.checkerframework.dataflow.cfg.block.SingleSuccessorBlock;
import org.checkerframework.dataflow.cfg.block.SpecialBlock;
import org.checkerframework.dataflow.cfg.block.SpecialBlockImpl;
import org.checkerframework.dataflow.cfg.node.Node;
import org.checkerframework.dataflow.cfg.node.ReturnNode;

import java.util.Collections;
import java.util.Deque;
import java.util.HashSet;
import java.util.IdentityHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
import java.util.Set;

import com.sun.source.tree.ClassTree;
import com.sun.source.tree.MethodTree;
import com.sun.source.tree.Tree;

/**
 * A control flow graph (CFG for short) of a single method.
 *
 * @author Stefan Heule
 *
 */
public class ControlFlowGraph {

    /** The entry block of the control flow graph. */
    protected final SpecialBlock entryBlock;

    /** The regular exit block of the control flow graph. */
    protected final SpecialBlock regularExitBlock;

    /** The exceptional exit block of the control flow graph. */
    protected final SpecialBlock exceptionalExitBlock;

    /** The AST this CFG corresponds to. */
    protected UnderlyingAST underlyingAST;

    /**
     * Maps from AST {@link Tree}s to {@link Node}s.  Every Tree that produces
     * a value will have at least one corresponding Node.  Trees
     * that undergo conversions, such as boxing or unboxing, can map to two
     * distinct Nodes.  The Node for the pre-conversion value is stored
     * in treeLookup, while the Node for the post-conversion value
     * is stored in convertedTreeLookup.
     */
    protected IdentityHashMap treeLookup;

    /** Map from AST {@link Tree}s to post-conversion {@link Node}s. */
    protected IdentityHashMap convertedTreeLookup;

    /**
     * All return nodes (if any) encountered. Only includes return
     * statements that actually return something
     */
    protected final List returnNodes;

    public ControlFlowGraph(SpecialBlock entryBlock, SpecialBlockImpl regularExitBlock, SpecialBlockImpl exceptionalExitBlock, UnderlyingAST underlyingAST,
            IdentityHashMap treeLookup,
            IdentityHashMap convertedTreeLookup,
            List returnNodes) {
        super();
        this.entryBlock = entryBlock;
        this.underlyingAST = underlyingAST;
        this.treeLookup = treeLookup;
        this.convertedTreeLookup = convertedTreeLookup;
        this.regularExitBlock = regularExitBlock;
        this.exceptionalExitBlock = exceptionalExitBlock;
        this.returnNodes = returnNodes;
    }

    /**
     * @return the {@link Node} to which the {@link Tree} t
     *         corresponds.
     */
    public Node getNodeCorrespondingToTree(Tree t) {
        if (convertedTreeLookup.containsKey(t)) {
            return convertedTreeLookup.get(t);
        } else {
            return treeLookup.get(t);
        }
    }

    /** @return the entry block of the control flow graph. */
    public SpecialBlock getEntryBlock() {
        return entryBlock;
    }

    public List getReturnNodes() {
        return returnNodes;
    }

    public SpecialBlock getRegularExitBlock() {
        return regularExitBlock;
    }

    public SpecialBlock getExceptionalExitBlock() {
        return exceptionalExitBlock;
    }

    /** @return the AST this CFG corresponds to. */
    public UnderlyingAST getUnderlyingAST() {
        return underlyingAST;
    }

    /**
     * @return the set of all basic block in this control flow graph
     */
    public Set getAllBlocks() {
        Set visited = new HashSet<>();
        Queue worklist = new LinkedList<>();
        Block cur = entryBlock;
        visited.add(entryBlock);

        // traverse the whole control flow graph
        while (true) {
            if (cur == null) {
                break;
            }

            Queue succs = new LinkedList<>();
            if (cur.getType() == BlockType.CONDITIONAL_BLOCK) {
                ConditionalBlock ccur = ((ConditionalBlock) cur);
                succs.add(ccur.getThenSuccessor());
                succs.add(ccur.getElseSuccessor());
            } else {
                assert cur instanceof SingleSuccessorBlock;
                Block b = ((SingleSuccessorBlock) cur).getSuccessor();
                if (b != null) {
                    succs.add(b);
                }
            }

            if (cur.getType() == BlockType.EXCEPTION_BLOCK) {
                ExceptionBlock ecur = (ExceptionBlock) cur;
                for (Set exceptionSuccSet : ecur.getExceptionalSuccessors().values()) {
                    succs.addAll(exceptionSuccSet);
                }
            }

            for (Block b : succs) {
                if (!visited.contains(b)) {
                    visited.add(b);
                    worklist.add(b);
                }
            }

            cur = worklist.poll();
        }

        return visited;
    }

    /**
     * @return the list of all basic block in this control flow graph
     * in reversed depth-first postorder sequence.
     *
     * Blocks may appear more than once in the sequence.
     */
    public List getDepthFirstOrderedBlocks() {
        List dfsOrderResult = new LinkedList<>();
        Set visited = new HashSet<>();
        Deque worklist = new LinkedList<>();
        worklist.add(entryBlock);
        while (!worklist.isEmpty()) {
            Block cur = worklist.getLast();
            if (visited.contains(cur)) {
                dfsOrderResult.add(cur);
                worklist.removeLast();
            } else {
                visited.add(cur);
                Deque successors = getSuccessors(cur);
                successors.removeAll(visited);
                worklist.addAll(successors);
            }
        }

        Collections.reverse(dfsOrderResult);
        return dfsOrderResult;
    }

    /**
     * Get a list of all successor Blocks for cur
     * @return a Deque of successor Blocks
     */
    private Deque getSuccessors(Block cur) {
        Deque succs = new LinkedList<>();
        if (cur.getType() == BlockType.CONDITIONAL_BLOCK) {
            ConditionalBlock ccur = ((ConditionalBlock) cur);
            succs.add(ccur.getThenSuccessor());
            succs.add(ccur.getElseSuccessor());
        } else {
            assert cur instanceof SingleSuccessorBlock;
            Block b = ((SingleSuccessorBlock) cur).getSuccessor();
            if (b != null) {
                succs.add(b);
            }
        }

        if (cur.getType() == BlockType.EXCEPTION_BLOCK) {
            ExceptionBlock ecur = (ExceptionBlock) cur;
            for (Set exceptionSuccSet : ecur.getExceptionalSuccessors().values()) {
                succs.addAll(exceptionSuccSet);
            }
        }
        return succs;
    }

    /**
     * @return the tree-lookup map
     */
    public IdentityHashMap getTreeLookup() {
        return new IdentityHashMap<>(treeLookup);
    }

    /**
     * Get the {@link MethodTree} of the CFG if the argument {@link Tree} maps
     * to a {@link Node} in the CFG or null otherwise.
     */
    public /*@Nullable*/ MethodTree getContainingMethod(Tree t) {
        if (treeLookup.containsKey(t)) {
            if (underlyingAST.getKind() == UnderlyingAST.Kind.METHOD) {
                UnderlyingAST.CFGMethod cfgMethod = (UnderlyingAST.CFGMethod) underlyingAST;
                return cfgMethod.getMethod();
            }
        }
        return null;
    }

    /**
     * Get the {@link ClassTree} of the CFG if the argument {@link Tree} maps
     * to a {@link Node} in the CFG or null otherwise.
     */
    public /*@Nullable*/ ClassTree getContainingClass(Tree t) {
        if (treeLookup.containsKey(t)) {
            if (underlyingAST.getKind() == UnderlyingAST.Kind.METHOD) {
                UnderlyingAST.CFGMethod cfgMethod = (UnderlyingAST.CFGMethod) underlyingAST;
                return cfgMethod.getClassTree();
            }
        }
        return null;
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy