All Downloads are FREE. Search and download functionalities are using the official Maven repository.

javacutil.src.org.checkerframework.javacutil.InternalUtils Maven / Gradle / Ivy

Go to download

The Checker Framework enhances Java’s type system to make it more powerful and useful. This lets software developers detect and prevent errors in their Java programs. The Checker Framework includes compiler plug-ins ("checkers") that find bugs or verify their absence. It also permits you to write your own compiler plug-ins.

There is a newer version: 3.42.0
Show newest version
package org.checkerframework.javacutil;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import javax.annotation.processing.ProcessingEnvironment;
import javax.lang.model.element.AnnotationMirror;
import javax.lang.model.element.Element;
import javax.lang.model.element.ExecutableElement;
import javax.lang.model.type.TypeKind;
import javax.lang.model.type.TypeMirror;
import javax.lang.model.type.TypeVariable;
import javax.lang.model.type.WildcardType;
import javax.lang.model.util.Elements;

import com.sun.source.tree.AnnotatedTypeTree;
import com.sun.source.tree.AnnotationTree;
import com.sun.source.tree.ArrayAccessTree;
import com.sun.source.tree.AssignmentTree;
import com.sun.source.tree.ExpressionTree;
import com.sun.source.tree.MethodTree;
import com.sun.source.tree.NewArrayTree;
import com.sun.source.tree.NewClassTree;
import com.sun.source.tree.Tree;
import com.sun.source.tree.TypeParameterTree;
import com.sun.source.util.TreePath;
import com.sun.tools.javac.code.Flags;
import com.sun.tools.javac.code.Symbol;
import com.sun.tools.javac.code.Symbol.TypeSymbol;
import com.sun.tools.javac.code.Type;
import com.sun.tools.javac.code.Type.AnnotatedType;
import com.sun.tools.javac.code.Types;
import com.sun.tools.javac.processing.JavacProcessingEnvironment;
import com.sun.tools.javac.tree.JCTree;
import com.sun.tools.javac.tree.JCTree.JCAnnotatedType;
import com.sun.tools.javac.tree.JCTree.JCAnnotation;
import com.sun.tools.javac.tree.JCTree.JCExpressionStatement;
import com.sun.tools.javac.tree.JCTree.JCMemberReference;
import com.sun.tools.javac.tree.JCTree.JCMethodDecl;
import com.sun.tools.javac.tree.JCTree.JCMethodInvocation;
import com.sun.tools.javac.tree.JCTree.JCNewArray;
import com.sun.tools.javac.tree.JCTree.JCNewClass;
import com.sun.tools.javac.tree.JCTree.JCTypeParameter;
import com.sun.tools.javac.tree.TreeInfo;
import com.sun.tools.javac.util.Context;

/*>>>
 import org.checkerframework.checker.nullness.qual.*;
 */

/**
 * Static utility methods used by annotation abstractions in this package. Some
 * methods in this class depend on the use of Sun javac internals; any procedure
 * in the Checker Framework that uses a non-public API should be placed here.
 */
public class InternalUtils {

    // Class cannot be instantiated.
    private InternalUtils() {
        throw new AssertionError("Class InternalUtils cannot be instantiated.");
    }

    /**
     * Gets the {@link Element} ("symbol") for the given Tree API node.
     *
     * @param tree the {@link Tree} node to get the symbol for
     * @throws IllegalArgumentException
     *         if {@code tree} is null or is not a valid javac-internal tree
     *         (JCTree)
     * @return the {@code {@link Symbol}} for the given tree, or null if one
     *         could not be found
     */
    public static /*@Nullable*/ Element symbol(Tree tree) {
        if (tree == null) {
            ErrorReporter.errorAbort("InternalUtils.symbol: tree is null");
            return null; // dead code
        }

        if (!(tree instanceof JCTree)) {
            ErrorReporter.errorAbort("InternalUtils.symbol: tree is not a valid Javac tree");
            return null; // dead code
        }

        if (TreeUtils.isExpressionTree(tree)) {
            tree = TreeUtils.skipParens((ExpressionTree) tree);
        }

        switch (tree.getKind()) {
            case VARIABLE:
            case METHOD:
            case CLASS:
            case ENUM:
            case INTERFACE:
            case ANNOTATION_TYPE:
            case TYPE_PARAMETER:
                return TreeInfo.symbolFor((JCTree) tree);

            // symbol() only works on MethodSelects, so we need to get it manually
            // for method invocations.
            case METHOD_INVOCATION:
                return TreeInfo.symbol(((JCMethodInvocation) tree).getMethodSelect());

            case ASSIGNMENT:
                return TreeInfo.symbol((JCTree)((AssignmentTree)tree).getVariable());

            case ARRAY_ACCESS:
                return symbol(((ArrayAccessTree)tree).getExpression());

            case NEW_CLASS:
                return ((JCNewClass)tree).constructor;

            case MEMBER_REFERENCE:
                // TreeInfo.symbol, which is used in the default case, didn't handle
                // member references until JDK8u20. So handle it here.
                return ((JCMemberReference) tree).sym;

            default:
                return TreeInfo.symbol((JCTree) tree);
        }
    }

    /**
     * Determines whether or not the node referred to by the given
     * {@link TreePath} is an anonymous constructor (the constructor for an
     * anonymous class.
     *
     * @param method the {@link TreePath} for a node that may be an anonymous
     *        constructor
     * @return true if the given path points to an anonymous constructor, false
     *         if it does not
     */
    public static boolean isAnonymousConstructor(final MethodTree method) {
        /*@Nullable*/ Element e = InternalUtils.symbol(method);
        if (e == null || !(e instanceof Symbol)) {
            return false;
        }

        if ((((/*@NonNull*/ Symbol)e).flags() & Flags.ANONCONSTR) != 0) {
            return true;
        }

        return false;
    }

    /**
     * indicates whether it should return the constructor that gets invoked
     * in cases of anonymous classes
     */
    private static final boolean RETURN_INVOKE_CONSTRUCTOR = true;

    /**
     * Determines the symbol for a constructor given an invocation via
     * {@code new}.
     *
     * If the tree is a declaration of an anonymous class, then method returns
     * constructor that gets invoked in the extended class, rather than the
     * anonymous constructor implicitly added by the constructor (JLS 15.9.5.1)
     *
     * @param tree the constructor invocation
     * @return the {@link ExecutableElement} corresponding to the constructor
     *         call in {@code tree}
     */
    public static ExecutableElement constructor(NewClassTree tree) {

        if (!(tree instanceof JCTree.JCNewClass)) {
            ErrorReporter.errorAbort("InternalUtils.constructor: not a javac internal tree");
            return null; // dead code
        }

        JCNewClass newClassTree = (JCNewClass) tree;

        if (RETURN_INVOKE_CONSTRUCTOR && tree.getClassBody() != null) {
            // anonymous constructor bodies should contain exactly one statement
            // in the form:
            //    super(arg1, ...)
            // or
            //    o.super(arg1, ...)
            //
            // which is a method invocation (!) to the actual constructor

            // the method call is guaranteed to return nonnull
            JCMethodDecl anonConstructor =
                (JCMethodDecl) TreeInfo.declarationFor(newClassTree.constructor, newClassTree);
            assert anonConstructor != null;
            assert anonConstructor.body.stats.size() == 1;
            JCExpressionStatement stmt = (JCExpressionStatement) anonConstructor.body.stats.head;
            JCTree.JCMethodInvocation superInvok = (JCMethodInvocation) stmt.expr;
            return (ExecutableElement) TreeInfo.symbol(superInvok.meth);
        }

        Element e = newClassTree.constructor;

        assert e instanceof ExecutableElement;

        return (ExecutableElement) e;
    }

    public final static List annotationsFromTypeAnnotationTrees(List annos) {
        List annotations = new ArrayList(annos.size());
        for (AnnotationTree anno : annos) {
            annotations.add(((JCAnnotation)anno).attribute);
        }
        return annotations;
    }

    public final static List annotationsFromTree(AnnotatedTypeTree node) {
        return annotationsFromTypeAnnotationTrees(((JCAnnotatedType)node).annotations);
    }

    public final static List annotationsFromTree(TypeParameterTree node) {
        return annotationsFromTypeAnnotationTrees(((JCTypeParameter)node).annotations);
    }

    public final static List annotationsFromArrayCreation(NewArrayTree node, int level) {

        assert node instanceof JCNewArray;
        final JCNewArray newArray = ((JCNewArray) node);

        if (level == -1) {
            return annotationsFromTypeAnnotationTrees(newArray.annotations);
        }

        if (newArray.dimAnnotations.length() > 0
                && (level >= 0)
                && (level < newArray.dimAnnotations.size()))
            return annotationsFromTypeAnnotationTrees(newArray.dimAnnotations.get(level));

        return Collections.emptyList();
    }

    public static TypeMirror typeOf(Tree tree) {
        return ((JCTree) tree).type;
    }

    /**
     * Returns whether a TypeVariable represents a captured type.
     */
    public static boolean isCaptured(TypeVariable typeVar) {
        if (typeVar instanceof AnnotatedType) {
            return ((Type.TypeVar) ((Type.AnnotatedType) typeVar).unannotatedType()).isCaptured();
        }
        return ((Type.TypeVar) typeVar).isCaptured();
    }

    /**
     * Returns whether a TypeMirror represents a class type.
     */
    public static boolean isClassType(TypeMirror type) {
        return (type instanceof Type.ClassType);
    }

    /**
     * Returns the least upper bound of two {@link TypeMirror}s,
     * ignoring any annotations on the types.
     *
     * Wrapper around Types.lub to add special handling for
     * null types, primitives, and wildcards.
     *
     * @param processingEnv the {@link ProcessingEnvironment} to use.
     * @param tm1 a {@link TypeMirror}.
     * @param tm2 a {@link TypeMirror}.
     * @return the least upper bound of {@code tm1} and {@code tm2}.
     */
    public static TypeMirror leastUpperBound(
            ProcessingEnvironment processingEnv, TypeMirror tm1, TypeMirror tm2) {
        Type t1 = ((Type) tm1).unannotatedType();
        Type t2 = ((Type) tm2).unannotatedType();
        JavacProcessingEnvironment javacEnv = (JavacProcessingEnvironment) processingEnv;
        Types types = Types.instance(javacEnv.getContext());
        if (types.isSameType(t1, t2)) {
            // Special case if the two types are equal.
            return t1;
        }
        // Handle the 'null' type manually (not done by types.lub).
        if (t1.getKind() == TypeKind.NULL) {
            return t2;
        }
        if (t2.getKind() == TypeKind.NULL) {
            return t1;
        }
        // Special case for primitives.
        if (TypesUtils.isPrimitive(t1) || TypesUtils.isPrimitive(t2)) {
            if (types.isAssignable(t1, t2)) {
                return t2;
            } else if (types.isAssignable(t2, t1)) {
                return t1;
            } else {
                return processingEnv.getTypeUtils().getNoType(TypeKind.NONE);
            }
        }
        if (t1.getKind() == TypeKind.WILDCARD) {
            WildcardType wc1 = (WildcardType) t1;
            Type bound = (Type) wc1.getExtendsBound();
            if (bound == null) {
                // Implicit upper bound of java.lang.Object
                Elements elements = processingEnv.getElementUtils();
                return elements.getTypeElement("java.lang.Object").asType();
            }
            t1 = bound;
        }
        if (t2.getKind() == TypeKind.WILDCARD) {
            WildcardType wc2 = (WildcardType) t2;
            Type bound = (Type) wc2.getExtendsBound();
            if (bound == null) {
                // Implicit upper bound of java.lang.Object
                Elements elements = processingEnv.getElementUtils();
                return elements.getTypeElement("java.lang.Object").asType();
            }
            t2 = bound;
        }
        return types.lub(t1, t2);
    }

    /**
     * Returns the greatest lower bound of two {@link TypeMirror}s,
     * ignoring any annotations on the types.
     *
     * Wrapper around Types.glb to add special handling for
     * null types, primitives, and wildcards.
     *
     *
     * @param processingEnv the {@link ProcessingEnvironment} to use.
     * @param tm1 a {@link TypeMirror}.
     * @param tm2 a {@link TypeMirror}.
     * @return the greatest lower bound of {@code tm1} and {@code tm2}.
     */
    public static TypeMirror greatestLowerBound(
            ProcessingEnvironment processingEnv, TypeMirror tm1, TypeMirror tm2) {
        Type t1 = ((Type) tm1).unannotatedType();
        Type t2 = ((Type) tm2).unannotatedType();
        JavacProcessingEnvironment javacEnv = (JavacProcessingEnvironment) processingEnv;
        Types types = Types.instance(javacEnv.getContext());
        if (types.isSameType(t1, t2)) {
            // Special case if the two types are equal.
            return t1;
        }
        // Handle the 'null' type manually.
        if (t1.getKind() == TypeKind.NULL) {
            return t1;
        }
        if (t2.getKind() == TypeKind.NULL) {
            return t2;
        }
        // Special case for primitives.
        if (TypesUtils.isPrimitive(t1) || TypesUtils.isPrimitive(t2)) {
            if (types.isAssignable(t1, t2)) {
                return t1;
            } else if (types.isAssignable(t2, t1)) {
                return t2;
            } else {
                // Javac types.glb returns TypeKind.Error when the GLB does
                // not exist, but we can't create one.  Use TypeKind.NONE
                // instead.
                return processingEnv.getTypeUtils().getNoType(TypeKind.NONE);
            }
        }
        if (t1.getKind() == TypeKind.WILDCARD) {
            return t2;
        }
        if (t2.getKind() == TypeKind.WILDCARD) {
            return t1;
        }

        // If neither type is a primitive type, null type, or wildcard
        // and if the types are not the same, use javac types.glb
        return types.glb(t1, t2);
    }

    /**
     * Returns the return type of a method, where the "raw" return type of that
     * method is given (i.e., the return type might still contain unsubstituted
     * type variables), given the receiver of the method call.
     */
    public static TypeMirror substituteMethodReturnType(TypeMirror methodType,
            TypeMirror substitutedReceiverType) {
        if (methodType.getKind() != TypeKind.TYPEVAR) {
            return methodType;
        }
        // TODO: find a nicer way to substitute type variables
        String t = methodType.toString();
        Type finalReceiverType = (Type) substitutedReceiverType;
        int i = 0;
        for (TypeSymbol typeParam : finalReceiverType.tsym.getTypeParameters()) {
            if (t.equals(typeParam.toString())) {
                return finalReceiverType.getTypeArguments().get(i);
            }
            i++;
        }
        assert false;
        return null;
    }

    /** Helper function to extract the javac Context from the
     * javac processing environment.
     *
     * @param env the processing environment
     * @return the javac Context
     */
    public static Context getJavacContext(ProcessingEnvironment env) {
        return ((JavacProcessingEnvironment)env).getContext();
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy