All Downloads are FREE. Search and download functionalities are using the official Maven repository.

javacutil.src.org.checkerframework.javacutil.TreeUtils Maven / Gradle / Ivy

Go to download

The Checker Framework enhances Java’s type system to make it more powerful and useful. This lets software developers detect and prevent errors in their Java programs. The Checker Framework includes compiler plug-ins ("checkers") that find bugs or verify their absence. It also permits you to write your own compiler plug-ins.

There is a newer version: 3.42.0
Show newest version
package org.checkerframework.javacutil;

/*>>>
import org.checkerframework.checker.nullness.qual.*;
*/

import java.util.EnumSet;
import java.util.Set;

import javax.annotation.processing.ProcessingEnvironment;
import javax.lang.model.element.Element;
import javax.lang.model.element.ElementKind;
import javax.lang.model.element.ExecutableElement;
import javax.lang.model.element.Name;
import javax.lang.model.element.TypeElement;
import javax.lang.model.element.VariableElement;
import javax.lang.model.util.ElementFilter;

import com.sun.source.tree.AnnotatedTypeTree;
import com.sun.source.tree.ArrayAccessTree;
import com.sun.source.tree.BinaryTree;
import com.sun.source.tree.BlockTree;
import com.sun.source.tree.ClassTree;
import com.sun.source.tree.CompoundAssignmentTree;
import com.sun.source.tree.ExpressionStatementTree;
import com.sun.source.tree.ExpressionTree;
import com.sun.source.tree.IdentifierTree;
import com.sun.source.tree.LiteralTree;
import com.sun.source.tree.MemberSelectTree;
import com.sun.source.tree.MethodInvocationTree;
import com.sun.source.tree.MethodTree;
import com.sun.source.tree.NewClassTree;
import com.sun.source.tree.ParameterizedTypeTree;
import com.sun.source.tree.ParenthesizedTree;
import com.sun.source.tree.PrimitiveTypeTree;
import com.sun.source.tree.StatementTree;
import com.sun.source.tree.Tree;
import com.sun.source.tree.TypeCastTree;
import com.sun.source.tree.VariableTree;
import com.sun.source.util.TreePath;
import com.sun.source.util.Trees;
import com.sun.tools.javac.code.Flags;
import com.sun.tools.javac.code.Symbol.MethodSymbol;
import com.sun.tools.javac.tree.JCTree;

/**
 * A utility class made for helping to analyze a given {@code Tree}.
 */
// TODO: This class needs significant restructuring
public final class TreeUtils {

    // Class cannot be instantiated.
    private TreeUtils() { throw new AssertionError("Class TreeUtils cannot be instantiated."); }

    /**
     * Checks if the provided method is a constructor method or no.
     *
     * @param tree
     *            a tree defining the method
     * @return true iff tree describes a constructor
     */
    public static boolean isConstructor(final MethodTree tree) {
        return tree.getName().contentEquals("");
    }

    /**
     * Checks if the method invocation is a call to super.
     *
     * @param tree
     *            a tree defining a method invocation
     *
     * @return true iff tree describes a call to super
     */
    public static boolean isSuperCall(MethodInvocationTree tree) {
        return isNamedMethodCall("super", tree);
    }

    /**
     * Checks if the method invocation is a call to this.
     *
     * @param tree
     *            a tree defining a method invocation
     *
     * @return true iff tree describes a call to this
     */
    public static boolean isThisCall(MethodInvocationTree tree) {
        return isNamedMethodCall("this", tree);

    }

    protected static boolean isNamedMethodCall(String name, MethodInvocationTree tree) {
        /*@Nullable*/ ExpressionTree mst = tree.getMethodSelect();
        assert mst != null; /*nninvariant*/

        if (mst.getKind() == Tree.Kind.IDENTIFIER ) {
            return ((IdentifierTree)mst).getName().contentEquals(name);
        }

        if (mst.getKind() == Tree.Kind.MEMBER_SELECT) {
            MemberSelectTree selectTree = (MemberSelectTree)mst;

            if (selectTree.getExpression().getKind() != Tree.Kind.IDENTIFIER) {
                return false;
            }

            return ((IdentifierTree) selectTree.getExpression()).getName()
                    .contentEquals(name);
        }

        return false;
    }

    /**
     * Returns true if the tree is a tree that 'looks like' either an access
     * of a field or an invocation of a method that are owned by the same
     * accessing instance.
     *
     * It would only return true if the access tree is of the form:
     * 
     *   field
     *   this.field
     *
     *   method()
     *   this.method()
     * 
* * It does not perform any semantical check to differentiate between * fields and local variables; local methods or imported static methods. * * @param tree expression tree representing an access to object member * @return {@code true} iff the member is a member of {@code this} instance */ public static boolean isSelfAccess(final ExpressionTree tree) { ExpressionTree tr = TreeUtils.skipParens(tree); // If method invocation check the method select if (tr.getKind() == Tree.Kind.ARRAY_ACCESS) { return false; } if (tree.getKind() == Tree.Kind.METHOD_INVOCATION) { tr = ((MethodInvocationTree)tree).getMethodSelect(); } tr = TreeUtils.skipParens(tr); if (tr.getKind() == Tree.Kind.TYPE_CAST) { tr = ((TypeCastTree)tr).getExpression(); } tr = TreeUtils.skipParens(tr); if (tr.getKind() == Tree.Kind.IDENTIFIER) { return true; } if (tr.getKind() == Tree.Kind.MEMBER_SELECT) { tr = ((MemberSelectTree)tr).getExpression(); if (tr.getKind() == Tree.Kind.IDENTIFIER) { Name ident = ((IdentifierTree)tr).getName(); return ident.contentEquals("this") || ident.contentEquals("super"); } } return false; } /** * Gets the first enclosing tree in path, of the specified kind. * * @param path the path defining the tree node * @param kind the kind of the desired tree * @return the enclosing tree of the given type as given by the path */ public static Tree enclosingOfKind(final TreePath path, final Tree.Kind kind) { return enclosingOfKind(path, EnumSet.of(kind)); } /** * Gets the first enclosing tree in path, with any one of the specified kinds. * * @param path the path defining the tree node * @param kinds the set of kinds of the desired tree * @return the enclosing tree of the given type as given by the path */ public static Tree enclosingOfKind(final TreePath path, final Set kinds) { TreePath p = path; while (p != null) { Tree leaf = p.getLeaf(); assert leaf != null; /*nninvariant*/ if (kinds.contains(leaf.getKind())) { return leaf; } p = p.getParentPath(); } return null; } /** * Gets path to the first enclosing class tree, where class is * defined by the classTreeKinds method. * * @param path the path defining the tree node * @return the path to the enclosing class tree */ public static TreePath pathTillClass(final TreePath path) { return pathTillOfKind(path, classTreeKinds()); } /** * Gets path to the first enclosing tree of the specified kind. * * @param path the path defining the tree node * @param kind the kind of the desired tree * @return the path to the enclosing tree of the given type */ public static TreePath pathTillOfKind(final TreePath path, final Tree.Kind kind) { return pathTillOfKind(path, EnumSet.of(kind)); } /** * Gets path to the first enclosing tree with any one of the specified kinds. * * @param path the path defining the tree node * @param kinds the set of kinds of the desired tree * @return the path to the enclosing tree of the given type */ public static TreePath pathTillOfKind(final TreePath path, final Set kinds) { TreePath p = path; while (p != null) { Tree leaf = p.getLeaf(); assert leaf != null; /*nninvariant*/ if (kinds.contains(leaf.getKind())) { return p; } p = p.getParentPath(); } return null; } /** * Gets the first enclosing tree in path, of the specified class * * @param path the path defining the tree node * @param treeClass the class of the desired tree * @return the enclosing tree of the given type as given by the path */ public static T enclosingOfClass(final TreePath path, final Class treeClass) { TreePath p = path; while (p != null) { Tree leaf = p.getLeaf(); if (treeClass.isInstance(leaf)) { return treeClass.cast(leaf); } p = p.getParentPath(); } return null; } /** * Gets the enclosing class of the tree node defined by the given * {@code {@link TreePath}}. It returns a {@link Tree}, from which * {@code checkers.types.AnnotatedTypeMirror} or {@link Element} can be * obtained. * * @param path the path defining the tree node * @return the enclosing class (or interface) as given by the path, or null * if one does not exist */ public static /*@Nullable*/ ClassTree enclosingClass(final /*@Nullable*/ TreePath path) { return (ClassTree) enclosingOfKind(path, classTreeKinds()); } /** * Gets the enclosing variable of a tree node defined by the given * {@link TreePath}. * * @param path the path defining the tree node * @return the enclosing variable as given by the path, or null if one does not exist */ public static VariableTree enclosingVariable(final TreePath path) { return (VariableTree) enclosingOfKind(path, Tree.Kind.VARIABLE); } /** * Gets the enclosing method of the tree node defined by the given * {@code {@link TreePath}}. It returns a {@link Tree}, from which an * {@code checkers.types.AnnotatedTypeMirror} or {@link Element} can be * obtained. * * @param path the path defining the tree node * @return the enclosing method as given by the path, or null if one does * not exist */ public static /*@Nullable*/ MethodTree enclosingMethod(final /*@Nullable*/ TreePath path) { return (MethodTree) enclosingOfKind(path, Tree.Kind.METHOD); } public static /*@Nullable*/ BlockTree enclosingTopLevelBlock(TreePath path) { TreePath parpath = path.getParentPath(); while (parpath!=null && parpath.getLeaf().getKind() != Tree.Kind.CLASS) { path = parpath; parpath = parpath.getParentPath(); } if (path.getLeaf().getKind() == Tree.Kind.BLOCK) { return (BlockTree) path.getLeaf(); } return null; } /** * If the given tree is a parenthesized tree, it returns the enclosed * non-parenthesized tree. Otherwise, it returns the same tree. * * @param tree an expression tree * @return the outermost non-parenthesized tree enclosed by the given tree */ public static ExpressionTree skipParens(final ExpressionTree tree) { ExpressionTree t = tree; while (t.getKind() == Tree.Kind.PARENTHESIZED) t = ((ParenthesizedTree)t).getExpression(); return t; } /** * Returns the tree with the assignment context for the treePath * leaf node. (Does not handle pseudo-assignment of an argument to * a parameter or a receiver expression to a receiver.) * * The assignment context for the {@code treePath} is the leaf of its parent, * if the leaf is one of the following trees: *
    *
  • AssignmentTree
  • *
  • CompoundAssignmentTree
  • *
  • MethodInvocationTree
  • *
  • NewArrayTree
  • *
  • NewClassTree
  • *
  • ReturnTree
  • *
  • VariableTree
  • *
* * If the leaf is a ConditionalExpressionTree or ParenthesizedTree, then recur on the leaf. * * Otherwise, null is returned. * * @return the assignment context as described */ public static Tree getAssignmentContext(final TreePath treePath) { TreePath parentPath = treePath.getParentPath(); if (parentPath == null) { return null; } Tree parent = parentPath.getLeaf(); switch (parent.getKind()) { case PARENTHESIZED: case CONDITIONAL_EXPRESSION: return getAssignmentContext(parentPath); case ASSIGNMENT: case METHOD_INVOCATION: case NEW_ARRAY: case NEW_CLASS: case RETURN: case VARIABLE: return parent; default: // 11 Tree.Kinds are CompoundAssignmentTrees, // so use instanceof rather than listing all 11. if (parent instanceof CompoundAssignmentTree) { return parent; } return null; } } /** * Gets the element for a class corresponding to a declaration. * * @return the element for the given class */ public static final TypeElement elementFromDeclaration(ClassTree node) { TypeElement elt = (TypeElement) InternalUtils.symbol(node); return elt; } /** * Gets the element for a method corresponding to a declaration. * * @return the element for the given method */ public static final ExecutableElement elementFromDeclaration(MethodTree node) { ExecutableElement elt = (ExecutableElement) InternalUtils.symbol(node); return elt; } /** * Gets the element for a variable corresponding to its declaration. * * @return the element for the given variable */ public static final VariableElement elementFromDeclaration(VariableTree node) { VariableElement elt = (VariableElement) InternalUtils.symbol(node); return elt; } /** * Gets the element for the declaration corresponding to this use of an element. * To get the element for a declaration, use {@link * Trees#getElement(TreePath)} instead. * * TODO: remove this method, as it really doesn't do anything. * * @param node the tree corresponding to a use of an element * @return the element for the corresponding declaration */ public static final Element elementFromUse(ExpressionTree node) { return InternalUtils.symbol(node); } // Specialization for return type. public static final ExecutableElement elementFromUse(MethodInvocationTree node) { return (ExecutableElement) elementFromUse((ExpressionTree) node); } // Specialization for return type. public static final ExecutableElement elementFromUse(NewClassTree node) { return (ExecutableElement) elementFromUse((ExpressionTree) node); } /** * Determine whether the given ExpressionTree has an underlying element. * * @param node the ExpressionTree to test * @return whether the tree refers to an identifier, member select, or method invocation */ public static final boolean isUseOfElement(ExpressionTree node) { node = TreeUtils.skipParens(node); switch (node.getKind()) { case IDENTIFIER: case MEMBER_SELECT: case METHOD_INVOCATION: case NEW_CLASS: return true; default: return false; } } /** * @return the name of the invoked method */ public static final Name methodName(MethodInvocationTree node) { ExpressionTree expr = node.getMethodSelect(); if (expr.getKind() == Tree.Kind.IDENTIFIER) { return ((IdentifierTree)expr).getName(); } else if (expr.getKind() == Tree.Kind.MEMBER_SELECT) { return ((MemberSelectTree)expr).getIdentifier(); } ErrorReporter.errorAbort("TreeUtils.methodName: cannot be here: " + node); return null; // dead code } /** * @return true if the first statement in the body is a self constructor * invocation within a constructor */ public static final boolean containsThisConstructorInvocation(MethodTree node) { if (!TreeUtils.isConstructor(node) || node.getBody().getStatements().isEmpty()) return false; StatementTree st = node.getBody().getStatements().get(0); if (!(st instanceof ExpressionStatementTree) || !(((ExpressionStatementTree)st).getExpression() instanceof MethodInvocationTree)) return false; MethodInvocationTree invocation = (MethodInvocationTree) ((ExpressionStatementTree)st).getExpression(); return "this".contentEquals(TreeUtils.methodName(invocation)); } public static final Tree firstStatement(Tree tree) { Tree first; if (tree.getKind() == Tree.Kind.BLOCK) { BlockTree block = (BlockTree)tree; if (block.getStatements().isEmpty()) { first = block; } else { first = block.getStatements().iterator().next(); } } else { first = tree; } return first; } /** * Determine whether the given class contains an explicit constructor. * * @param node a class tree * @return true, iff there is an explicit constructor */ public static boolean hasExplicitConstructor(ClassTree node) { TypeElement elem = TreeUtils.elementFromDeclaration(node); for ( ExecutableElement ee : ElementFilter.constructorsIn(elem.getEnclosedElements())) { MethodSymbol ms = (MethodSymbol) ee; long mod = ms.flags(); if ((mod & Flags.SYNTHETIC) == 0) { return true; } } return false; } /** * Returns true if the tree is of a diamond type. * In contrast to the implementation in TreeInfo, this version * works on Trees. * * @see com.sun.tools.javac.tree.TreeInfo#isDiamond(JCTree) */ public static final boolean isDiamondTree(Tree tree) { switch (tree.getKind()) { case ANNOTATED_TYPE: return isDiamondTree(((AnnotatedTypeTree)tree).getUnderlyingType()); case PARAMETERIZED_TYPE: return ((ParameterizedTypeTree)tree).getTypeArguments().isEmpty(); case NEW_CLASS: return isDiamondTree(((NewClassTree)tree).getIdentifier()); default: return false; } } /** * Returns true if the tree represents a {@code String} concatenation * operation */ public static final boolean isStringConcatenation(Tree tree) { return (tree.getKind() == Tree.Kind.PLUS && TypesUtils.isString(InternalUtils.typeOf(tree))); } /** * Returns true if the compound assignment tree is a string concatenation */ public static final boolean isStringCompoundConcatenation(CompoundAssignmentTree tree) { return (tree.getKind() == Tree.Kind.PLUS_ASSIGNMENT && TypesUtils.isString(InternalUtils.typeOf(tree))); } /** * Returns true if the node is a constant-time expression. * * A tree is a constant-time expression if it is: *
    *
  1. a literal tree *
  2. a reference to a final variable initialized with a compile time * constant *
  3. a String concatenation of two compile time constants *
*/ public static boolean isCompileTimeString(ExpressionTree node) { ExpressionTree tree = TreeUtils.skipParens(node); if (tree instanceof LiteralTree) { return true; } if (TreeUtils.isUseOfElement(tree)) { Element elt = TreeUtils.elementFromUse(tree); return ElementUtils.isCompileTimeConstant(elt); } else if (TreeUtils.isStringConcatenation(tree)) { BinaryTree binOp = (BinaryTree) tree; return isCompileTimeString(binOp.getLeftOperand()) && isCompileTimeString(binOp.getRightOperand()); } else { return false; } } /** * Returns the receiver tree of a field access or a method invocation */ public static ExpressionTree getReceiverTree(ExpressionTree expression) { ExpressionTree receiver = TreeUtils.skipParens(expression); if (!(receiver.getKind() == Tree.Kind.METHOD_INVOCATION || receiver.getKind() == Tree.Kind.MEMBER_SELECT || receiver.getKind() == Tree.Kind.IDENTIFIER || receiver.getKind() == Tree.Kind.ARRAY_ACCESS)) { // No receiver tree for anything but these four kinds. return null; } if (receiver.getKind() == Tree.Kind.METHOD_INVOCATION) { // Trying to handle receiver calls to trees of the form // ((m).getArray()) // returns the type of 'm' in this case receiver = ((MethodInvocationTree)receiver).getMethodSelect(); if (receiver.getKind() == Tree.Kind.IDENTIFIER) { // It's a method call "m(foo)" without an explicit receiver return null; } else if (receiver.getKind() == Tree.Kind.MEMBER_SELECT) { receiver = ((MemberSelectTree)receiver).getExpression(); } else { // Otherwise, e.g. a NEW_CLASS: nothing to do. } } else if (receiver.getKind() == Tree.Kind.IDENTIFIER) { // It's a field access on implicit this or a local variable/parameter. return null; } else if (receiver.getKind() == Tree.Kind.ARRAY_ACCESS) { return TreeUtils.skipParens(((ArrayAccessTree)receiver).getExpression()); } else if (receiver.getKind() == Tree.Kind.MEMBER_SELECT) { receiver = ((MemberSelectTree)receiver).getExpression(); // Avoid int.class if (receiver instanceof PrimitiveTypeTree) { return null; } } // Receiver is now really just the receiver tree. return TreeUtils.skipParens(receiver); } // TODO: What about anonymous classes? // Adding Tree.Kind.NEW_CLASS here doesn't work, because then a // tree gets cast to ClassTree when it is actually a NewClassTree, // for example in enclosingClass above. private final static Set classTreeKinds = EnumSet.of( Tree.Kind.CLASS, Tree.Kind.ENUM, Tree.Kind.INTERFACE, Tree.Kind.ANNOTATION_TYPE ); public static Set classTreeKinds() { return classTreeKinds; } /** * Is the given tree kind a class, i.e. a class, enum, * interface, or annotation type. * * @param tree the tree to test * @return true, iff the given kind is a class kind */ public static boolean isClassTree(Tree tree) { return classTreeKinds().contains(tree.getKind()); } private final static Set typeTreeKinds = EnumSet.of( Tree.Kind.PRIMITIVE_TYPE, Tree.Kind.PARAMETERIZED_TYPE, Tree.Kind.TYPE_PARAMETER, Tree.Kind.ARRAY_TYPE, Tree.Kind.UNBOUNDED_WILDCARD, Tree.Kind.EXTENDS_WILDCARD, Tree.Kind.SUPER_WILDCARD, Tree.Kind.ANNOTATED_TYPE ); public static Set typeTreeKinds() { return typeTreeKinds; } /** * Is the given tree a type instantiation? * * TODO: this is an under-approximation: e.g. an identifier could * be either a type use or an expression. How can we distinguish. * * @param tree the tree to test * @return true, iff the given tree is a type */ public static boolean isTypeTree(Tree tree) { return typeTreeKinds().contains(tree.getKind()); } /** * Returns true if the given element is an invocation of the method, or * of any method that overrides that one. */ public static boolean isMethodInvocation(Tree tree, ExecutableElement method, ProcessingEnvironment env) { if (!(tree instanceof MethodInvocationTree)) { return false; } MethodInvocationTree methInvok = (MethodInvocationTree)tree; ExecutableElement invoked = TreeUtils.elementFromUse(methInvok); return isMethod(invoked, method, env); } /** Returns true if the given element is, or overrides, method. */ private static boolean isMethod(ExecutableElement questioned, ExecutableElement method, ProcessingEnvironment env) { return (questioned.equals(method) || env.getElementUtils().overrides(questioned, method, (TypeElement)questioned.getEnclosingElement())); } /** * Returns the ExecutableElement for a method declaration of * methodName, in class typeName, with params parameters. * * TODO: to precisely resolve method overloading, we should use parameter types and not just * the number of parameters! */ public static ExecutableElement getMethod(String typeName, String methodName, int params, ProcessingEnvironment env) { TypeElement mapElt = env.getElementUtils().getTypeElement(typeName); for (ExecutableElement exec : ElementFilter.methodsIn(mapElt.getEnclosedElements())) { if (exec.getSimpleName().contentEquals(methodName) && exec.getParameters().size() == params) return exec; } ErrorReporter.errorAbort("TreeUtils.getMethod: shouldn't be here!"); return null; // dead code } /** * Determine whether the given expression is either "this" or an outer * "C.this". * *

* TODO: Should this also handle "super"? */ public static final boolean isExplicitThisDereference(ExpressionTree tree) { if (tree.getKind() == Tree.Kind.IDENTIFIER && ((IdentifierTree)tree).getName().contentEquals("this")) { // Explicit this reference "this" return true; } if (tree.getKind() != Tree.Kind.MEMBER_SELECT) { return false; } MemberSelectTree memSelTree = (MemberSelectTree) tree; if (memSelTree.getIdentifier().contentEquals("this")) { // Outer this reference "C.this" return true; } return false; } /** * Determine whether tree is a class literal, such * as * *

     *   Object . class
     * 
* * @return true iff if tree is a class literal */ public static boolean isClassLiteral(Tree tree) { if (tree.getKind() != Tree.Kind.MEMBER_SELECT) { return false; } return "class".equals(((MemberSelectTree) tree).getIdentifier().toString()); } /** * Determine whether tree is a field access expressions, such * as * *
     *   f
     *   obj . f
     * 
* * @return true iff if tree is a field access expression (implicit or * explicit) */ public static boolean isFieldAccess(Tree tree) { if (tree.getKind().equals(Tree.Kind.MEMBER_SELECT)) { // explicit field access MemberSelectTree memberSelect = (MemberSelectTree) tree; Element el = TreeUtils.elementFromUse(memberSelect); return el.getKind().isField(); } else if (tree.getKind().equals(Tree.Kind.IDENTIFIER)) { // implicit field access IdentifierTree ident = (IdentifierTree) tree; Element el = TreeUtils.elementFromUse(ident); return el.getKind().isField() && !ident.getName().contentEquals("this") && !ident.getName().contentEquals("super"); } return false; } /** * Compute the name of the field that the field access tree * accesses. Requires tree to be a field access, as determined * by isFieldAccess. * * @return the name of the field accessed by tree. */ public static String getFieldName(Tree tree) { assert isFieldAccess(tree); if (tree.getKind().equals(Tree.Kind.MEMBER_SELECT)) { MemberSelectTree mtree = (MemberSelectTree) tree; return mtree.getIdentifier().toString(); } else { IdentifierTree itree = (IdentifierTree) tree; return itree.getName().toString(); } } /** * Determine whether tree refers to a method element, such * as * *
     *   m(...)
     *   obj . m(...)
     * 
* * @return true iff if tree is a method access expression (implicit or * explicit) */ public static boolean isMethodAccess(Tree tree) { if (tree.getKind().equals(Tree.Kind.MEMBER_SELECT)) { // explicit method access MemberSelectTree memberSelect = (MemberSelectTree) tree; Element el = TreeUtils.elementFromUse(memberSelect); return el.getKind() == ElementKind.METHOD || el.getKind() == ElementKind.CONSTRUCTOR; } else if (tree.getKind().equals(Tree.Kind.IDENTIFIER)) { // implicit method access IdentifierTree ident = (IdentifierTree) tree; // The field "super" and "this" are also legal methods if (ident.getName().contentEquals("super") || ident.getName().contentEquals("this")) { return true; } Element el = TreeUtils.elementFromUse(ident); return el.getKind() == ElementKind.METHOD || el.getKind() == ElementKind.CONSTRUCTOR; } return false; } /** * Compute the name of the method that the method access tree * accesses. Requires tree to be a method access, as determined * by isMethodAccess. * * @return the name of the method accessed by tree. */ public static String getMethodName(Tree tree) { assert isMethodAccess(tree); if (tree.getKind().equals(Tree.Kind.MEMBER_SELECT)) { MemberSelectTree mtree = (MemberSelectTree) tree; return mtree.getIdentifier().toString(); } else { IdentifierTree itree = (IdentifierTree) tree; return itree.getName().toString(); } } /** * @return {@code true} if and only if {@code tree} can have a type * annotation. * * TODO: is this implementation precise enough? E.g. does * a .class literal work correctly? */ public static boolean canHaveTypeAnnotation(Tree tree) { return ((JCTree) tree).type != null; } /** * Returns true if and only if the given {@code tree} represents a field * access of the given {@link VariableElement}. */ public static boolean isSpecificFieldAccess(Tree tree, VariableElement var) { if (tree instanceof MemberSelectTree) { MemberSelectTree memSel = (MemberSelectTree) tree; Element field = TreeUtils.elementFromUse(memSel); return field.equals(var); } else if (tree instanceof IdentifierTree) { IdentifierTree idTree = (IdentifierTree) tree; Element field = TreeUtils.elementFromUse(idTree); return field.equals(var); } else { return false; } } /** * Returns the VariableElement for a field declaration. * * @param typeName the class where the field is declared * @param fieldName the name of the field * @param env the processing environment * @return the VariableElement for typeName.fieldName */ public static VariableElement getField(String typeName, String fieldName, ProcessingEnvironment env) { TypeElement mapElt = env.getElementUtils().getTypeElement(typeName); for (VariableElement var : ElementFilter.fieldsIn(mapElt.getEnclosedElements())) { if (var.getSimpleName().contentEquals(fieldName)) { return var; } } ErrorReporter.errorAbort("TreeUtils.getField: shouldn't be here!"); return null; // dead code } /** Determine whether the given tree represents an ExpressionTree. * * TODO: is there a nicer way than an instanceof? * * @param tree the Tree to test * @return whether the tree is an ExpressionTree */ public static boolean isExpressionTree(Tree tree) { return tree instanceof ExpressionTree; } /** * @param node the method invocation to check * @return true if this is a super call to the {@link Enum} constructor */ public static boolean isEnumSuper(MethodInvocationTree node) { ExecutableElement ex = TreeUtils.elementFromUse(node); Name name = ElementUtils.getQualifiedClassName(ex); boolean correctClass = "java.lang.Enum".contentEquals(name); boolean correctMethod = "".contentEquals(ex.getSimpleName()); return correctClass && correctMethod; } /** Determine whether the given tree represents a declaration of a type * (including type parameters). * * @param node the Tree to test * @return true if the tree is a type declaration */ public static boolean isTypeDeclaration(Tree node) { switch (node.getKind()) { // These tree kinds are always declarations. Uses of the declared // types have tree kind IDENTIFIER. case ANNOTATION_TYPE: case CLASS: case ENUM: case INTERFACE: case TYPE_PARAMETER: return true; default: return false; } } /** * @see Object#getClass() * @return true iff invocationTree is an instance of getClass() */ public static boolean isGetClassInvocation(MethodInvocationTree invocationTree) { final Element declarationElement = elementFromUse(invocationTree); String ownerName = ElementUtils.getQualifiedClassName(declarationElement.getEnclosingElement()).toString(); return ownerName.equals("java.lang.Object") && declarationElement.getSimpleName().toString().equals("getClass"); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy