Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/**
* Copyright (c) 2015, Ecole des Mines de Nantes
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the .
* 4. Neither the name of the nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.chocosolver.samples.integer;
import org.chocosolver.samples.AbstractProblem;
import org.chocosolver.solver.ResolutionPolicy;
import org.chocosolver.solver.Solver;
import org.chocosolver.solver.constraints.IntConstraintFactory;
import org.chocosolver.solver.search.strategy.ISF;
import org.chocosolver.solver.search.strategy.IntStrategyFactory;
import org.chocosolver.solver.search.strategy.strategy.AbstractStrategy;
import org.chocosolver.solver.trace.Chatterbox;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.solver.variables.VariableFactory;
import org.kohsuke.args4j.Option;
/**
* wikipedia:
* "Given a set of items, each with a weight and a value,
* determine the count of each item to include in a collection so that
* the total weight is less than or equal to a given limit and the total value is as large as possible.
* It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack
* and must fill it with the most useful items."
*
*
*
* @author Charles Prud'homme
* @since 31/03/11
*/
public class Knapsack extends AbstractProblem {
@Option(name = "-d", aliases = "--data", usage = "Knapsack data ID.", required = false)
Data data = Data.k20;
@Option(name = "-n", usage = "Restricted to n objects.", required = false)
int n = 13;
// input data
int[] capacites;
int[] energies;
int[] volumes;
int[] nbOmax;
// variables
public IntVar power;
public IntVar[] objects;
public void setUp() {
// read capacities
capacites = new int[]{data.data[0], data.data[1]};
int no = data.data[2];
if (n > -1) {
no = n;
}
energies = new int[no];
volumes = new int[no];
nbOmax = new int[no];
for (int i = 0, j = 3; i < no; i++) {
energies[i] = data.data[j++];
volumes[i] = data.data[j++];
nbOmax[i] = (int) Math.ceil(capacites[1] / volumes[i]);
}
}
@Override
public void createSolver() {
solver = new Solver("Knapsack");
}
@Override
public void buildModel() {
setUp();
int nos = energies.length;
// occurrence of each item
objects = new IntVar[nos];
for (int i = 0; i < nos; i++) {
objects[i] = VariableFactory.bounded("o_" + (i + 1), 0, nbOmax[i], solver);
}
// objective variable
power = VariableFactory.bounded("power", 0, 9999, solver);
IntVar scalar = VariableFactory.bounded("weight", capacites[0] - 1, capacites[1] + 1, solver);
solver.post(IntConstraintFactory.knapsack(objects, scalar, power, volumes, energies));
}
@Override
public void configureSearch() {
AbstractStrategy strat = IntStrategyFactory.lexico_LB(objects);
// trick : top-down maximization
solver.set(ISF.objective_top_bottom(power), strat);
Chatterbox.showDecisions(solver);
}
@Override
public void solve() {
solver.findOptimalSolution(ResolutionPolicy.MAXIMIZE, power);
}
@Override
public void prettyOut() {
StringBuilder st = new StringBuilder(String.format("Knapsack -- %s\n", data.name()));
st.append("\tItem: Count\n");
for (int i = 0; i < objects.length; i++) {
st.append(String.format("\t#%d: %d\n", i, objects[i].getValue()));
}
st.append(String.format("\n\tPower: %d", power.getValue()));
System.out.println(st.toString());
}
public static void main(String[] args) {
new Knapsack().execute(args);
}
////////////////////////////////////////// DATA ////////////////////////////////////////////////////////////////////
static enum Data {
k10(new int[]{500, 550, 10,
100, 79, 49, 25, 54, 99, 12, 41, 78, 94, 30, 75, 65, 40, 31, 59, 90, 95, 50, 99}),
k20(new int[]{1000, 1100, 20,
54, 38, 12, 57, 47, 69, 33, 90, 30, 79, 65, 89, 56, 28, 57, 70, 91, 38, 88, 71,
77, 46, 99, 41, 29, 49, 23, 43, 39, 36, 86, 68, 12, 92, 85, 33, 22, 84, 64, 90}),;
final int[] data;
Data(int[] data) {
this.data = data;
}
public int get(int i) {
return data[i];
}
}
}