All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.chocosolver.samples.integer.Partition Maven / Gradle / Ivy

/**
 * Copyright (c) 2015, Ecole des Mines de Nantes
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    This product includes software developed by the .
 * 4. Neither the name of the  nor the
 *    names of its contributors may be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY  ''AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL  BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.chocosolver.samples.integer;

import org.chocosolver.samples.AbstractProblem;
import org.chocosolver.solver.Solver;
import org.chocosolver.solver.constraints.Constraint;
import org.chocosolver.solver.constraints.IntConstraintFactory;
import org.chocosolver.solver.search.strategy.IntStrategyFactory;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.solver.variables.VF;
import org.chocosolver.solver.variables.VariableFactory;
import org.chocosolver.util.ESat;
import org.kohsuke.args4j.Option;

import java.util.Arrays;

/**
 * CSPLib prob049:
* "This problem consists in finding a partition of numbers 1..N into two sets A and B such that: *
    *
  • A and B have the same cardinality
  • *
  • sum of numbers in A = sum of numbers in B
  • *
  • sum of squares of numbers in A = sum of squares of numbers in B
  • *
*

* More constraints can thus be added, e.g also impose the equality on the sum of cubes. * There is no solution for N < 8." *

*
* * @author Charles Prud'homme * @since 31/03/11 */ public class Partition extends AbstractProblem { @Option(name = "-n", usage = "Partition size.", required = false) int N = 2 * 32; IntVar[] vars; IntVar[] Ovars; Constraint[] heavy = new Constraint[3]; @Override public void createSolver() { solver = new Solver("Partition " + N); } @Override public void buildModel() { int size = this.N / 2; IntVar[] x, y; x = VariableFactory.enumeratedArray("x", size, 1, 2 * size, solver); y = VariableFactory.enumeratedArray("y", size, 1, 2 * size, solver); // break symmetries for (int i = 0; i < size - 1; i++) { solver.post(IntConstraintFactory.arithm(x[i], "<", x[i + 1])); solver.post(IntConstraintFactory.arithm(y[i], "<", y[i + 1])); } solver.post(IntConstraintFactory.arithm(x[0], "<", y[0])); solver.post(IntConstraintFactory.arithm(x[0], "=", 1)); IntVar[] xy = new IntVar[2 * size]; for (int i = size - 1; i >= 0; i--) { xy[i] = x[i]; xy[size + i] = y[i]; } Ovars = new IntVar[2 * size]; for (int i = 0; i < size; i++) { Ovars[i * 2] = x[i]; Ovars[i * 2 + 1] = y[i]; } int[] coeffs = new int[2 * size]; for (int i = size - 1; i >= 0; i--) { coeffs[i] = 1; coeffs[size + i] = -1; } heavy[0] = IntConstraintFactory.scalar(xy, coeffs, VariableFactory.fixed(0, solver)); solver.post(heavy[0]); IntVar[] sxy, sx, sy; sxy = new IntVar[2 * size]; sx = new IntVar[size]; sy = new IntVar[size]; for (int i = size - 1; i >= 0; i--) { sx[i] = VF.bounded("x^", 0, x[i].getUB() * x[i].getUB(), solver); sxy[i] = sx[i]; sy[i] = VF.bounded("y^", 0, y[i].getUB() * y[i].getUB(), solver); sxy[size + i] = sy[i]; solver.post(IntConstraintFactory.times(x[i], x[i], sx[i])); solver.post(IntConstraintFactory.times(y[i], y[i], sy[i])); solver.post(IntConstraintFactory.member(sx[i], 1, 4 * size * size)); solver.post(IntConstraintFactory.member(sy[i], 1, 4 * size * size)); } heavy[1] = IntConstraintFactory.scalar(sxy, coeffs, VariableFactory.fixed(0, solver)); solver.post(heavy[1]); coeffs = new int[size]; Arrays.fill(coeffs, 1); solver.post(IntConstraintFactory.scalar(x, coeffs, VariableFactory.fixed(2 * size * (2 * size + 1) / 4, solver))); solver.post(IntConstraintFactory.scalar(y, coeffs, VariableFactory.fixed(2 * size * (2 * size + 1) / 4, solver))); solver.post(IntConstraintFactory.scalar(sx, coeffs, VariableFactory.fixed(2 * size * (2 * size + 1) * (4 * size + 1) / 12, solver))); solver.post(IntConstraintFactory.scalar(sy, coeffs, VariableFactory.fixed(2 * size * (2 * size + 1) * (4 * size + 1) / 12, solver))); heavy[2] = IntConstraintFactory.alldifferent(xy, "BC"); solver.post(heavy[2]); vars = xy; } @Override public void configureSearch() { solver.set(IntStrategyFactory.minDom_LB(Ovars)); } @Override public void solve() { solver.findSolution(); } @Override public void prettyOut() { StringBuilder st = new StringBuilder(); if (ESat.TRUE == solver.isFeasible()) { int sum1 = 0, sum2 = 0; int i = 0; st.append(vars[i].getValue()); sum1 += vars[i].getValue(); sum2 += vars[i].getValue() * vars[i++].getValue(); for (; i < N / 2; i++) { st.append(", ").append(vars[i].getValue()); sum1 += vars[i].getValue(); sum2 += vars[i].getValue() * vars[i].getValue(); } st.append(": (").append(sum1).append(")~(").append(sum2).append(")\n"); sum1 = sum2 = 0; st.append(vars[i].getValue()); sum1 += vars[i].getValue(); sum2 += vars[i].getValue() * vars[i++].getValue(); for (; i < N; i++) { st.append(", ").append(vars[i].getValue()); sum1 += vars[i].getValue(); sum2 += vars[i].getValue() * vars[i].getValue(); } st.append(": (").append(sum1).append(")~(").append(sum2).append(")\n"); } else { st.append("INFEASIBLE"); } System.out.println(st.toString()); } public static void main(String[] args) { new Partition().execute(args); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy