All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.chocosolver.solver.constraints.nary.lex.PropLexChain Maven / Gradle / Ivy

There is a newer version: 4.10.16
Show newest version
/**
 * Copyright (c) 2016, Ecole des Mines de Nantes
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    This product includes software developed by the .
 * 4. Neither the name of the  nor the
 *    names of its contributors may be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY  ''AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL  BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.chocosolver.solver.constraints.nary.lex;

import org.chocosolver.solver.constraints.Propagator;
import org.chocosolver.solver.constraints.PropagatorPriority;
import org.chocosolver.solver.exception.ContradictionException;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.solver.variables.events.IntEventType;
import org.chocosolver.solver.variables.events.PropagatorEventType;
import org.chocosolver.util.ESat;
import org.chocosolver.util.tools.ArrayUtils;

/**
 * Solver constraint of the LexChain constraint.
 * Allows to sort lexical chain with strict lexicographic ordering or not.
 * 
* * @author Ashish * @author Charles Prud'homme * @since 09/08/11 */ public class PropLexChain extends Propagator { // the number of variables in each vector of the chain - v1 <= lexChainEq/lexChain <= v2 ..... private int N; // total number of vector in the lex chain constraint private int M; // array for holding lexicographically largest feasible upper bound of each vector private int[][] UB; // array for holding lexicographically smallest feasible lower bound of each vector private int[][] LB; // If strict's value is true then lexChain is implemented , if false lexChainEq private boolean strict; // array of vectors in the lex chain constraint private IntVar[][] x; public PropLexChain(IntVar[][] variables, boolean strict) { super(ArrayUtils.flatten(variables), PropagatorPriority.LINEAR, true); M = variables.length; this.N = variables[0].length; this.x = new IntVar[M][N]; int p = 0; for (int i = 0; i < M; i++) { System.arraycopy(vars, p, x[i], 0, N); p += N; } this.strict = strict; UB = new int[M][N]; LB = new int[M][N]; } @Override public int getPropagationConditions(int vIdx) { return IntEventType.boundAndInst(); } @Override public void propagate(int evtmask) throws ContradictionException { if (PropagatorEventType.isFullPropagation(evtmask)) { for (int i = 0; i < N; i++) { UB[M - 1][i] = x[M - 1][i].getUB(); } for (int i = M - 2; i >= 0; i--) { computeUB(x[i], UB[i + 1], UB[i]); } for (int i = 0; i < N; i++) { LB[0][i] = x[0][i].getLB(); } for (int i = 1; i < M; i++) { computeLB(x[i], LB[i - 1], LB[i]); } } for (int i = 0; i < M; i++) { boundsLex(LB[i], x[i], UB[i]); } } @Override public void propagate(int idxVarInProp, int mask) throws ContradictionException { int vec_idx = idxVarInProp % M; if (IntEventType.isDecupp(mask)) { for (int i = 0; i < N; i++) { UB[vec_idx][i] = x[vec_idx][i].getUB(); } for (int i = vec_idx - 1; i >= 0; i--) { computeUB(x[i], UB[i + 1], UB[i]); } } if (IntEventType.isInclow(mask)) { for (int i = 0; i < N; i++) { LB[vec_idx][i] = x[vec_idx][i].getLB(); } for (int i = vec_idx + 1; i < M; i++) { computeLB(x[i], LB[i - 1], LB[i]); } } forcePropagate(PropagatorEventType.FULL_PROPAGATION); } @Override public ESat isEntailed() { if (isCompletelyInstantiated()) { return ESat.eval(checkTuple(0)); } return ESat.UNDEFINED; } /** * check the feasibility of a tuple, recursively on each pair of consecutive vectors. * Compare vector xi with vector x(i+1): * return false if xij > x(i+1)j or if (strict && xi=x(i+1)), and checkTuple(i+1, tuple) otherwise. * * @param i the index of the first vector to be considered * @return true iff lexChain(xi,x(i+1)) && lexChain(x(i+1),..,xk) */ private boolean checkTuple(int i) { if (i == x.length - 1) return true; int index = N * i; for (int j = 0; j < N; j++, index++) { if (vars[index].getValue() > vars[index + N].getValue()) return false; if (vars[index].getValue() < vars[index + N].getValue()) return checkTuple(i + 1); } return (!strict) && checkTuple(i + 1); } ///////////////////////////// /** * Filtering algorithm for between(a,x,b) * Ensures that x is lexicographically greater than a and less than b if strict is false * otherwise x is lexicographically greater than or equal to a and less than or equal to b * * @param a lexicographically smallest feasible lower bound * @param x the vector of variables among other vectors in the chain of vectors * @param b lexicographically largest feasible upper bound * @throws ContradictionException */ private void boundsLex(int[] a, IntVar[] x, int[] b) throws ContradictionException { int i = 0; while (i < N && a[i] == b[i]) { x[i].updateBounds(a[i], b[i], this); i++; } if (i < N) { x[i].updateBounds(a[i], b[i], this); } if (i == N || x[i].nextValue(a[i]) < b[i]) { return; } i++; while (i < N && x[i].getLB() == b[i] && x[i].getUB() == a[i]) { if (x[i].hasEnumeratedDomain()) { x[i].removeInterval(b[i] + 1, a[i] - 1, this); } i++; } if (i < N) { if (x[i].hasEnumeratedDomain()) { x[i].removeInterval(b[i] + 1, a[i] - 1, this); } } } /** * computes alpha for use in computing lexicographically largest feasible upper bound of x in * {@link PropLexChain#computeUB(IntVar[], int[], int[]) computUB} * * @param x the vector of variables whose lexicographically largest feasible upper bound is to be computed * @param b the vector of integers claimed to be the feasible upper bound * @return an integer greater than or equal to -1 which is used in the computation of lexicographically smallest feasible upper bound vector of integers of x * @throws ContradictionException */ private int computeAlpha(IntVar[] x, int[] b) throws ContradictionException { int i = 0; int alpha = -1; while (i < N && x[i].contains(b[i])) { if (b[i] > x[i].getLB()) { alpha = i; } i++; } if (!strict) { if (i == N || b[i] > x[i].getLB()) { alpha = i; } } else { if (i < N && b[i] > x[i].getLB()) { alpha = i; } } return alpha; } /** * computes beta for use in computing lexicographically smallest feasible lower bound of x in * {@link PropLexChain#computeLB(IntVar[], int[], int[]) computeLB} * * @param x the vector of variables whose lexicographically smallest feasible lower bound is to be computed * @param a the vector of integers claimed to be the feasible lower bound * @return an integer greater than or equal to -1 which is used in the computation of lexicographically smallest feasible upper bound vector of integers of x * @throws ContradictionException */ private int computeBeta(IntVar[] x, int[] a) throws ContradictionException { int i = 0; int beta = -1; while (i < N && x[i].contains(a[i])) { if (a[i] < x[i].getUB()) { beta = i; } i++; } if (!strict) { if (i == N || a[i] < x[i].getUB()) { beta = i; } } else { if (i < N && a[i] < x[i].getUB()) { beta = i; } } return beta; } /** * Computes the lexicographically largest feasible upper bound vector of integers of x . * if aplha computed in {@link PropLexChain#computeAlpha(IntVar[], int[]) computeAlpha} is -1 then * the current domain values can't satisfy the constraint .So the current intantiations if any are dropped and fresh search is continued. * * @param x the vector of variables whose lexicographically largest feasible upper bound is to be computed * @param b the vector of integers claimed to be the feasible upper bound * @param u lexicographically largest feasible upper bound of x * @throws ContradictionException */ private void computeUB(IntVar[] x, int[] b, int[] u) throws ContradictionException { int alpha = computeAlpha(x, b); if (alpha == -1) fails(); for (int i = 0; i < N; i++) { if (i < alpha) { u[i] = b[i]; } else if (i == alpha) { u[i] = x[i].previousValue(b[i]); } else { u[i] = x[i].getUB(); } } } /** * Computes the lexicographically smallest feasible lower bound vector of integers of x . * if beta computed in {@link PropLexChain#computeBeta(IntVar[], int[]) computeBeta} is -1 then * the current domain values can't satisfy the constraint .So the current intantiations if any are dropped and fresh search is continued. * * @param x the vector of variables whose lexicographically smallest feasible * lower bound is to be computed * @param a the vector of integers claimed to be the feasible lower bound * @param lower lexicographically smallest feasible lower bound of x * @throws ContradictionException */ private void computeLB(IntVar[] x, int[] a, int[] lower) throws ContradictionException { int beta = computeBeta(x, a); if (beta == -1) fails(); for (int i = 0; i < N; i++) { if (i < beta) { lower[i] = a[i]; } else if (i == beta) { lower[i] = x[i].nextValue(a[i]); } else { lower[i] = x[i].getLB(); } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy