org.chocosolver.solver.constraints.nary.cumulative.PropGraphCumulative Maven / Gradle / Ivy
/*
* This file is part of choco-solver, http://choco-solver.org/
*
* Copyright (c) 2022, IMT Atlantique. All rights reserved.
*
* Licensed under the BSD 4-clause license.
*
* See LICENSE file in the project root for full license information.
*/
package org.chocosolver.solver.constraints.nary.cumulative;
import org.chocosolver.solver.exception.ContradictionException;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.solver.variables.events.PropagatorEventType;
import org.chocosolver.util.objects.graphs.UndirectedGraph;
import org.chocosolver.util.objects.setDataStructures.ISet;
import org.chocosolver.util.objects.setDataStructures.ISetIterator;
import org.chocosolver.util.objects.setDataStructures.SetFactory;
import org.chocosolver.util.objects.setDataStructures.SetType;
import org.chocosolver.util.sort.ArraySort;
import java.util.BitSet;
import java.util.Comparator;
/**
* Graph based cumulative
* Maintains incrementally overlapping tasks
* Performs energy checking and mandatory part based filtering
* BEWARE : not idempotent, use two propagators to get the fix point
*
* @author Jean-Guillaume Fages
* @since 31/01/13
*/
public class PropGraphCumulative extends PropCumulative {
//***********************************************************************************
// VARIABLES
//***********************************************************************************
private final UndirectedGraph g;
private final ISet tasks;
private final ISet toCompute;
private long timestamp;
private boolean full;
private final boolean fast;
//***********************************************************************************
// CONSTRUCTOR
//***********************************************************************************
/**
* Graph-based cumulative propagator:
* - only filters over subsets of overlapping tasks
*
* @param s start variables
* @param d duration variables
* @param e end variables
* @param h height variables
* @param capa capacity variable
* @param fast reduces the number of propagation (less filtering)
* @param filters filtering algorithm to use
*/
public PropGraphCumulative(IntVar[] s, IntVar[] d, IntVar[] e, IntVar[] h, IntVar capa, boolean fast,
CumulFilter... filters) {
super(s, d, e, h, capa, true, filters);
this.g = new UndirectedGraph(model, n, SetType.BITSET, true);
this.tasks = SetFactory.makeBipartiteSet(0);
this.toCompute = SetFactory.makeBipartiteSet(0);
this.fast = fast;
}
//***********************************************************************************
// METHODS
//***********************************************************************************
@Override
public void propagate(int evtmask) throws ContradictionException {
if (PropagatorEventType.isFullPropagation(evtmask)) {
super.propagate(evtmask);
graphComputation();
} else {
if(full){
filter(allTasks);
}else {
int count = 0;
ISetIterator tcIt = toCompute.iterator();
while (tcIt.hasNext()){
int i = tcIt.nextInt();
for (int j : g.getNeighborsOf(i)) {
if (disjoint(i, j)) {
g.removeEdge(i, j);
}
}
count += g.getNeighborsOf(i).size();
if(count >= 2*n)break;
}
if (count >= 2*n) {
filter(allTasks);
} else {
ISetIterator iter = toCompute.iterator();
while (iter.hasNext()){
filterAround(iter.nextInt());
}
}
}
}
toCompute.clear();
full = false;
}
@Override
public void propagate(int varIdx, int mask) throws ContradictionException {
if (timestamp != model.getEnvironment().getTimeStamp()) {
timestamp = model.getEnvironment().getTimeStamp();
toCompute.clear();
full = false;
}
if (varIdx < 4 * n) {
int v = varIdx % n;
if(h[v].getUB()==0 || d[v].getUB()==0){
allTasks.remove(v);
ISetIterator gIt = g.getNeighborsOf(v).iterator();
while (gIt.hasNext()){
g.removeEdge(v,gIt.nextInt());
}
}else if(s[v].getUB()= e[j].getUB() || s[j].getLB() >= e[i].getUB();
}
private void graphComputation() {
for (int i = 0; i < n; i++) {
g.getNeighborsOf(i).clear();
}
Event[] events = new Event[2 * n];
ArraySort sort = new ArraySort<>(events.length, true, false);
Comparator eventComparator = (e1, e2) -> {
if (e1.date == e2.date) {
return e1.type - e2.type;
}
return e1.date - e2.date;
};
BitSet tprune = new BitSet(n);
for (int i = 0; i < n; i++) {
events[i] = new Event();
events[i].set(START, i, s[i].getLB());
events[i + n] = new Event();
events[i + n].set(END, i, e[i].getUB());
}
sort.sort(events, 2 * n, eventComparator);
int timeIndex = 0;
while (timeIndex < n * 2) {
Event event = events[timeIndex++];
switch (event.type) {
case (START):
boolean eok = h[event.index].getUB()>0 && d[event.index].getUB()>0;
if(eok) {
for (int i = tprune.nextSetBit(0); i >= 0; i = tprune.nextSetBit(i + 1)) {
if(h[i].getUB()>0 && d[i].getUB()>0) {
g.addEdge(i, event.index);
}
}
}
tprune.set(event.index);
break;
case (END):
tprune.clear(event.index);
break;
default:
throw new UnsupportedOperationException();
}
}
}
private static class Event {
protected int type;
protected int index;
protected int date;
protected void set(int t, int i, int d) {
date = d;
type = t;
index = i;
}
}
private final static int START = 1, END = 2;
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy