org.chocosolver.solver.objective.ObjectiveStrategy Maven / Gradle / Ivy
/*
* This file is part of choco-solver, http://choco-solver.org/
*
* Copyright (c) 2022, IMT Atlantique. All rights reserved.
*
* Licensed under the BSD 4-clause license.
*
* See LICENSE file in the project root for full license information.
*/
/**
* Created by IntelliJ IDEA.
* User: Jean-Guillaume Fages
* Date: 25/05/12
* Time: 15:39
*/
package org.chocosolver.solver.objective;
import org.chocosolver.solver.ICause;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.ResolutionPolicy;
import org.chocosolver.solver.exception.ContradictionException;
import org.chocosolver.solver.search.strategy.assignments.DecisionOperator;
import org.chocosolver.solver.search.strategy.decision.Decision;
import org.chocosolver.solver.search.strategy.decision.IntDecision;
import org.chocosolver.solver.search.strategy.strategy.AbstractStrategy;
import org.chocosolver.solver.variables.IntVar;
import static org.chocosolver.solver.objective.OptimizationPolicy.DICHOTOMIC;
/**
* Class that defines a branching strategy over the objective variable
*
* @author Jean-Guillaume Fages
* @since Oct. 2012
*/
public class ObjectiveStrategy extends AbstractStrategy {
//***********************************************************************************
// VARIABLES
//***********************************************************************************
private int globalLB, globalUB;
private final int coefLB;
private final int coefUB;
private final IntVar obj;
private long nbSols;
private final Model model;
private boolean firstCall;
private DecisionOperator decOperator;
private final OptimizationPolicy optPolicy;
//***********************************************************************************
// CONSTRUCTORS
//***********************************************************************************
/**
* Defines a branching strategy over the objective variable
* BEWARE: only activated after a first solution
*
* @param objective variable
* @param policy BOTTOM_UP, TOP_TOWN or DICHOTOMIC
*/
public ObjectiveStrategy(IntVar objective, OptimizationPolicy policy) {
this(objective, getCoefs(policy), policy);
}
/**
* Defines a parametrized dichotomic branching over the objective variable
* BEWARE: only activated after a first solution
*
* @param objective variable
* @param coefs [a,b] defines how to split the domain of the objective variable
* [1,1] will halve its domain
* [1,2] will take a value closer to the upper bound than the lower bound
* @param policy should be DICHOTOMIC
*/
public ObjectiveStrategy(IntVar objective, int[] coefs, OptimizationPolicy policy) {
super(objective);
this.obj = objective;
this.model = obj.getModel();
this.firstCall = true;
this.coefLB = coefs[0];
this.coefUB = coefs[1];
this.optPolicy = policy;
model.getSolver().setRestartOnSolutions();
if (coefLB < 0 || coefUB < 0 || coefLB + coefUB == 0) {
throw new UnsupportedOperationException("coefLB<0, coefUB<0 and coefLB+coefUB==0 are forbidden");
}
if (coefLB + coefUB != 1 && policy != DICHOTOMIC) {
throw new UnsupportedOperationException("Invalid coefficients for BOTTOM_UP or TOP_DOWN optimization" +
"\nuse signature public ObjectiveStrategy(IntVar obj, OptimizationPolicy policy, Model model) instead");
}
}
private static int[] getCoefs(OptimizationPolicy policy) {
switch (policy) {
case BOTTOM_UP:
return new int[]{1, 0};
case TOP_DOWN:
return new int[]{0, 1};
case DICHOTOMIC:
return new int[]{1, 1};
default:
throw new UnsupportedOperationException("unknown OptimizationPolicy " + policy);
}
}
private DecisionOperator getOperator(OptimizationPolicy optPolicy, ResolutionPolicy resoPolicy) {
switch (optPolicy) {
case BOTTOM_UP:
return decUB;
case TOP_DOWN:
return incLB;
case DICHOTOMIC:
switch (resoPolicy) {
case MINIMIZE:
return decUB;
case MAXIMIZE:
return incLB;
default:
throw new UnsupportedOperationException("ObjectiveStrategy is not for "+resoPolicy+" ResolutionPolicy");
}
default:
throw new UnsupportedOperationException("unknown OptimizationPolicy " + optPolicy);
}
}
//***********************************************************************************
// METHODS
//***********************************************************************************
public boolean init() {
decOperator = getOperator(optPolicy, model.getSolver().getObjectiveManager().getPolicy());
return true;
}
@Override
public void remove() {
}
@Override
public Decision getDecision() {
if (model.getSolver().getSolutionCount() == 0
|| (nbSols == model.getSolver().getSolutionCount() && optPolicy == DICHOTOMIC)) {
return null;
}
if (obj.isInstantiated()) {
return null;
}
if (firstCall) {
firstCall = false;
globalLB = obj.getLB();
globalUB = obj.getUB();
}
nbSols = model.getSolver().getSolutionCount();
globalLB = Math.max(globalLB, obj.getLB());//check
globalUB = Math.min(globalUB, obj.getUB());//check
// ObjectiveManager man = model.getResolver().getObjectiveManager();
// man.updateLB(globalLB);
// man.updateUB(globalUB);
if (globalLB > globalUB) {
return null;
}
if(model.getSettings().warnUser()){
model.getSolver().log().bold().println("- objective in [" + globalLB + ", " + globalUB + "]");
}
int target;
target = (globalLB * coefLB + globalUB * coefUB) / (coefLB + coefUB);
IntDecision dec = model.getSolver().getDecisionPath().makeIntDecision(obj, decOperator, target);
if(model.getSettings().warnUser()){
model.getSolver().log().bold().println("- trying " + obj + " " + (decOperator == decUB ? "<=" : ">=") + " " + target);
}
return dec;
}
private final DecisionOperator decUB = new DecisionOperator() {
//FIXME can not serialize decision
@Override
public boolean apply(IntVar var, int value, ICause cause) throws ContradictionException {
return var.updateUpperBound(value, cause);
}
@Override
public boolean unapply(IntVar var, int value, ICause cause) throws ContradictionException {
globalLB = value + 1;
// model.getResolver().getObjectiveManager().updateLB(globalLB);
return var.updateLowerBound(globalLB, cause);
}
@Override
public String toString() {
return " objective split(" + coefLB + "," + coefUB + "), decreases the upper bound first";
}
@Override
public DecisionOperator opposite() {
return incLB;
}
};
private final DecisionOperator incLB = new DecisionOperator() {
//FIXME can not serialize decision
@Override
public boolean apply(IntVar var, int value, ICause cause) throws ContradictionException {
return var.updateLowerBound(value, cause);
}
@Override
public boolean unapply(IntVar var, int value, ICause cause) throws ContradictionException {
globalUB = value - 1;
// model.getResolver().getObjectiveManager().updateUB(globalUB);
return var.updateUpperBound(globalUB, cause);
}
@Override
public String toString() {
return " objective split(" + coefLB + "," + coefUB + "), increases the lower bound first";
}
@Override
public DecisionOperator opposite() {
return decUB;
}
};
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy