All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.chocosolver.solver.search.strategy.Search Maven / Gradle / Ivy

There is a newer version: 4.10.17
Show newest version
/*
 * This file is part of choco-solver, http://choco-solver.org/
 *
 * Copyright (c) 2022, IMT Atlantique. All rights reserved.
 *
 * Licensed under the BSD 4-clause license.
 *
 * See LICENSE file in the project root for full license information.
 */
package org.chocosolver.solver.search.strategy;

import org.chocosolver.cutoffseq.GeometricalCutoffStrategy;
import org.chocosolver.cutoffseq.LubyCutoffStrategy;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.ResolutionPolicy;
import org.chocosolver.solver.Solution;
import org.chocosolver.solver.Solver;
import org.chocosolver.solver.objective.ObjectiveStrategy;
import org.chocosolver.solver.objective.OptimizationPolicy;
import org.chocosolver.solver.search.loop.monitors.IMonitorOpenNode;
import org.chocosolver.solver.search.restart.MonotonicRestartStrategy;
import org.chocosolver.solver.search.strategy.assignments.DecisionOperator;
import org.chocosolver.solver.search.strategy.assignments.DecisionOperatorFactory;
import org.chocosolver.solver.search.strategy.decision.Decision;
import org.chocosolver.solver.search.strategy.decision.IbexDecision;
import org.chocosolver.solver.search.strategy.selectors.values.*;
import org.chocosolver.solver.search.strategy.selectors.values.graph.edge.GraphEdgeSelector;
import org.chocosolver.solver.search.strategy.selectors.values.graph.edge.GraphLexEdge;
import org.chocosolver.solver.search.strategy.selectors.values.graph.edge.GraphRandomEdge;
import org.chocosolver.solver.search.strategy.selectors.values.graph.node.GraphLexNode;
import org.chocosolver.solver.search.strategy.selectors.values.graph.node.GraphNodeSelector;
import org.chocosolver.solver.search.strategy.selectors.values.graph.node.GraphRandomNode;
import org.chocosolver.solver.search.strategy.selectors.values.graph.priority.GraphNodeOrEdgeSelector;
import org.chocosolver.solver.search.strategy.selectors.values.graph.priority.GraphNodeThenEdges;
import org.chocosolver.solver.search.strategy.selectors.variables.*;
import org.chocosolver.solver.search.strategy.strategy.*;
import org.chocosolver.solver.variables.*;
import org.chocosolver.util.bandit.MOSS;
import org.chocosolver.util.bandit.Static;
import org.chocosolver.util.tools.VariableUtils;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.function.ToDoubleBiFunction;

public class Search {

    // ************************************************************************************
    // GENERIC PATTERNS
    // ************************************************************************************

    /**
     * Use the last conflict heuristic as a pluggin to improve a former search heuristic Should be
     * set after specifying a search strategy.
     *
     * @return last conflict strategy
     */
    public static  AbstractStrategy lastConflict(
            AbstractStrategy formerSearch) {
        return lastConflict(formerSearch, 1);
    }

    /**
     * Search heuristic combined with a constraint performing strong consistency on the next
     * decision variable and branching on the value with the best objective bound (for optimization)
     * and branches on the lower bound for SAT problems.
     * 

* BEWARE: ONLY FOR INTEGERS (lets the former search work for other variable types) * * @param formerSearch default search to branch on variables (defines the variable selector and * the value selector when this does not hold) * @return best bound strategy */ public static AbstractStrategy bestBound(AbstractStrategy formerSearch) { if (formerSearch == null) { throw new UnsupportedOperationException( "the search strategy in parameter cannot be null! Consider using Search.defaultSearch(model)"); } return new BoundSearch(formerSearch); } /** * Use the last conflict heuristic as a pluggin to improve a former search heuristic Should be * set after specifying a search strategy. * * @param k the maximum number of conflicts to store * @return last conflict strategy */ public static AbstractStrategy lastConflict( AbstractStrategy formerSearch, int k) { if (formerSearch == null) { throw new UnsupportedOperationException( "the search strategy in parameter cannot be null! Consider using Search.defaultSearch(model)"); } return new LastConflict<>(formerSearch.getVariables()[0].getModel(), formerSearch, k); } /** * Use the conflict ordering search as a pluggin to improve a former search heuristic Should be * set after specifying a search strategy. * * @return last conflict strategy */ public static AbstractStrategy conflictOrderingSearch( AbstractStrategy formerSearch) { return new ConflictOrderingSearch<>(formerSearch.getVariables()[0].getModel(), formerSearch); } /** * Make the input search strategy greedy, that is, decisions can be applied but not refuted. * * @param search a search heuristic building branching decisions * @return a greedy form of search */ public static AbstractStrategy greedySearch(AbstractStrategy search) { return new GreedyBranching(search); } /** * Apply sequentialy enumeration strategies. Strategies are considered in input order. When * strategy i returns null (all variables are instantiated) the i+1 ones is * activated. * * @param searches ordered set of enumeration strategies */ public static AbstractStrategy sequencer(AbstractStrategy... searches) { return new StrategiesSequencer(searches); } // ************************************************************************************ // SETVAR STRATEGIES // ************************************************************************************ /** * Generic strategy to branch on set variables * * @param varS variable selection strategy * @param valS integer selection strategy * @param enforceFirst branching order true = enforce first; false = remove first * @param sets SetVar array to branch on * @return a strategy to instantiate sets */ public static SetStrategy setVarSearch(VariableSelector varS, SetValueSelector valS, boolean enforceFirst, SetVar... sets) { return new SetStrategy(sets, varS, valS, enforceFirst); } /** * strategy to branch on sets by choosing the first unfixed variable and forcing its first * unfixed value * * @param sets variables to branch on * @return a strategy to instantiate sets */ public static SetStrategy setVarSearch(SetVar... sets) { return setVarSearch(new GeneralizedMinDomVarSelector<>(), new SetDomainMin(), true, sets); } /** * Assignment strategy which selects a variable according to DomOverWDeg and assign * it to its lower bound. * * @param vars list of variables * @return assignment strategy * @implNote This is based on "Boosting Systematic Search by Weighting Constraints." * Boussemart et al. ECAI 2004. * https://dblp.org/rec/conf/ecai/BoussemartHLS04 */ public static AbstractStrategy domOverWDegSearch(SetVar... vars) { return new SetStrategy(vars, new DomOverWDeg<>(vars, 0), new SetDomainMin(), true); } /** * Assignment strategy which selects a variable according to refined DomOverWDeg and assign * it to its lower bound, where the weight incrementer is "ca.cd". * * @param vars list of variables * @return assignment strategy * @implNote This is based on "Refining Constraint Weighting." Wattez et al. ICTAI 2019. * https://dblp.org/rec/conf/ictai/WattezLPT19 */ public static AbstractStrategy domOverWDegRefSearch(SetVar... vars) { return new SetStrategy(vars, new DomOverWDegRef<>(vars, 0), new SetDomainMin(), true); } /** * Assignment strategy which selects a variable according to Conflict History * and assigns it to its lower bound. * * @param vars list of variables * @return assignment strategy * @implNote This is based on "Conflict history based search for constraint satisfaction problem." * Habet et al. SAC 2019. * https://dblp.org/rec/conf/sac/HabetT19 */ public static AbstractStrategy conflictHistorySearch(SetVar... vars) { return new SetStrategy(vars, new ConflictHistorySearch<>(vars, 0), new SetDomainMin(), true); } /** * Assignment strategy which selects a variable according to Failure rate based * variable ordering and assigns it to its lower bound. * * @param vars list of variables * @return assignment strategy * @implNote This is based on "Failure Based Variable Ordering Heuristics for Solving CSPs." * H. Li, M. Yin, and Z. Li, CP 2021. * https://dblp.org/rec/conf/cp/LiYL21 */ public static AbstractStrategy failureRateBasedSearch(SetVar... vars) { return new SetStrategy(vars, new FailureBased<>(vars, 0, 2), new SetDomainMin(), true); } /** * Assignment strategy which selects a variable according to Failure length based * variable ordering and assigns it to its lower bound. * * @param vars list of variables * @return assignment strategy * @implNote This is based on "Failure Based Variable Ordering Heuristics for Solving CSPs." * H. Li, M. Yin, and Z. Li, CP 2021. * https://dblp.org/rec/conf/cp/LiYL21 */ public static AbstractStrategy failureLengthBasedSearch(SetVar... vars) { return new SetStrategy(vars, new FailureBased<>(vars, 0, 4), new SetDomainMin(), true); } // ************************************************************************************ // GRAPHVAR STRATEGIES // ************************************************************************************ /** * Generic strategy to branch on graph variables * * @param varS Variable selection strategy * @param nodeOrEdgeS Node or edge selection (defines if whenever a decision must be on nodes or edges) * @param nodeS Node selector (defines which node to enforce/remove if decision is on nodes) * @param edgeS Edge selector (defines which edge to enforce/remove if decision is on edges) * @param enforceFirst branching order true = enforce first; false = remove first * @param graphs GraphVar array to branch on * @return */ public static GraphStrategy graphVarSearch(VariableSelector varS, GraphNodeOrEdgeSelector nodeOrEdgeS, GraphNodeSelector nodeS, GraphEdgeSelector edgeS, boolean enforceFirst, GraphVar... graphs) { return new GraphStrategy(graphs, varS, nodeOrEdgeS, nodeS, edgeS, enforceFirst); } /** * Default graph var search. *

* Variable selection: input order. * Node or edges selection: nodes first then edges. * Node selection: lexicographic order. * Edge selection lexicographic order. * Enforce first. * *
node branching: * Let i be the first node such that * i in envelope(g) and i not in kernel(g). * The decision adds i to the kernel of g. * It is fails, then i is removed from the envelope of g. *
* edge branching: *
node branching: * Let (i,j) be the first edge such that * (i,j) in envelope(g) and (i,j) not in kernel(g). * The decision adds (i,j) to the kernel of g. * It is fails, then (i,j) is removed from the envelope of g * * @param graphs graph variables to branch on */ public static GraphStrategy graphVarSearch(GraphVar... graphs) { return graphVarSearch( new InputOrder<>(graphs[0].getModel()), new GraphNodeThenEdges(), new GraphLexNode(), new GraphLexEdge(), true, graphs ); } /** * Random graph var search. *

* Variable selection: random. * Node or edges selection: nodes first then edges. * Node selection: random. * Edge selection random. * Enforce first. * * @param seed the seed for random selection * @param graphs graph variables to branch on * @return a randomized graph variables search strategy */ public static GraphStrategy randomGraphVarSearch(long seed, GraphVar... graphs) { return graphVarSearch( new Random<>(seed), new GraphNodeThenEdges(), new GraphRandomNode(seed), new GraphRandomEdge(seed), true, graphs ); } // ************************************************************************************ // REALVAR STRATEGIES // ************************************************************************************ /** * Generic strategy to branch on real variables, based on domain splitting. A real decision is * like: *

    *
  • left branch: X ≤ v
  • *
  • right branch: X ≥ v + e
  • *
* where 'e' is given by epsilon. *

* * @param varS variable selection strategy * @param valS strategy to select where to split domains * @param epsilon gap for refutation * @param rvars RealVar array to branch on * @param leftFirst select left range first * @return a strategy to instantiate reals */ public static RealStrategy realVarSearch(VariableSelector varS, RealValueSelector valS, double epsilon, boolean leftFirst, RealVar... rvars) { return new RealStrategy(rvars, varS, valS, epsilon, leftFirst); } /** * strategy to branch on real variables by choosing sequentially the next variable domain to * split in two, wrt the middle value. A real decision is like: *
    *
  • left branch: X ≤ v
  • *
  • right branch: X ≥ v + e
  • *
* where 'e' is given by epsilon. *

* * @param epsilon gap for refutation * @param reals variables to branch on * @return a strategy to instantiate real variables */ public static RealStrategy realVarSearch(double epsilon, RealVar... reals) { return realVarSearch(new Cyclic<>(), new RealDomainMiddle(), epsilon, true, reals); } /** * Generic strategy to branch on real variables, based on domain splitting. *

* A real decision is like: *

    *
  • left branch: X ≤ v
  • *
  • right branch: X ≥ v + epsilon
  • *
* where epsilon is given or equal to the smallest precision among rvars divide by 10. *

* * @param varS variable selection strategy * @param valS strategy to select where to split domains * @param leftFirst select left range first * @param rvars RealVar array to branch on * @return a strategy to instantiate reals */ public static RealStrategy realVarSearch(VariableSelector varS, RealValueSelector valS, boolean leftFirst, RealVar... rvars) { return realVarSearch(varS, valS, Double.NaN, leftFirst, rvars); } /** * strategy to branch on real variables by choosing sequentially the next variable domain to * split in two, wrt the middle value. *

* A real decision is like: *

    *
  • left branch: X ≤ v
  • *
  • right branch: X ≥ v + {@link Double#MIN_VALUE}
  • *
*

* * @param reals variables to branch on * @return a strategy to instantiate real variables */ public static RealStrategy realVarSearch(RealVar... reals) { return realVarSearch(new Cyclic<>(), new RealDomainMiddle(), true, reals); } // ************************************************************************************ // INTVAR STRATEGIES // ************************************************************************************ /** * Builds your own search strategy based on binary decisions. * * @param varSelector defines how to select a variable to branch on. * @param valSelector defines how to select a value in the domain of the selected variable * @param decisionOperator defines how to modify the domain of the selected variable with the * selected value * @param vars variables to branch on * @return a custom search strategy */ public static IntStrategy intVarSearch(VariableSelector varSelector, IntValueSelector valSelector, DecisionOperator decisionOperator, IntVar... vars) { return new IntStrategy(vars, varSelector, valSelector, decisionOperator); } /** * Builds your own assignment strategy based on binary decisions. Selects a variable X * and a value V to make the decision X = V. Note that value assignments are the public static * decision operators. Therefore, they are not mentioned in the search heuristic name. * * @param varSelector defines how to select a variable to branch on. * @param valSelector defines how to select a value in the domain of the selected variable * @param vars variables to branch on * @return a custom search strategy */ public static IntStrategy intVarSearch(VariableSelector varSelector, IntValueSelector valSelector, IntVar... vars) { return intVarSearch(varSelector, valSelector, DecisionOperatorFactory.makeIntEq(), vars); } /** * Builds a default search heuristics of integer variables Variable selection relies on {@link * #domOverWDegSearch(IntVar...)} Value selection relies on InDomainBest for optimization and * InDomainMin for satisfaction * * @param vars variables to branch on * @return a default search strategy */ public static AbstractStrategy intVarSearch(IntVar... vars) { Model model = vars[0].getModel(); IntValueSelector valueSelector; if (model.getResolutionPolicy() == ResolutionPolicy.SATISFACTION || !(model.getObjective() instanceof IntVar)) { valueSelector = new IntDomainMin(); } else { valueSelector = new IntDomainBest(); model.getSolver().attach(model.getSolver().defaultSolution()); valueSelector = new IntDomainLast(model.getSolver().defaultSolution(), valueSelector, null); } return new IntStrategy(vars, new DomOverWDeg<>(vars, 0), valueSelector); } /** * Assignment strategy which selects a variable according to DomOverWDeg and assign * it to its lower bound. * * @param vars list of variables * @return assignment strategy * @implNote This is based on "Boosting Systematic Search by Weighting Constraints." * Boussemart et al. ECAI 2004. * https://dblp.org/rec/conf/ecai/BoussemartHLS04 */ public static AbstractStrategy domOverWDegSearch(IntVar... vars) { return new IntStrategy(vars, new DomOverWDeg<>(vars, 0), new IntDomainMin()); } /** * Assignment strategy which selects a variable according to refined DomOverWDeg and assign * it to its lower bound, where the weight incrementer is "ca.cd". * * @param vars list of variables * @return assignment strategy * @implNote This is based on "Refining Constraint Weighting." Wattez et al. ICTAI 2019. * https://dblp.org/rec/conf/ictai/WattezLPT19 */ public static AbstractStrategy domOverWDegRefSearch(IntVar... vars) { return new IntStrategy(vars, new DomOverWDegRef<>(vars, 0), new IntDomainMin()); } /** * Create an Activity based search strategy. *

*
Uses public static parameters * (GAMMA=0.999d, DELTA=0.2d, ALPHA=8, RESTART=1.1d, FORCE_SAMPLING=1) * * @param vars collection of variables * @return an Activity based search strategy. * @implNote This is based on "Activity-Based Search for Black-Box Constraint Programming Solvers." * Michel et al. CPAIOR 2012. * https://dblp.org/rec/conf/cpaior/MichelH12 */ public static AbstractStrategy activityBasedSearch(IntVar... vars) { return new ActivityBased(vars); } /** * Assignment strategy which selects a variable according to Conflict History * and assigns it to its lower bound. * * @param vars list of variables * @return assignment strategy * @implNote This is based on "Conflict history based search for constraint satisfaction problem." * Habet et al. SAC 2019. * https://dblp.org/rec/conf/sac/HabetT19 */ public static AbstractStrategy conflictHistorySearch(IntVar... vars) { return new IntStrategy(vars, new ConflictHistorySearch<>(vars, 0), new IntDomainMin()); } /** * Assignment strategy which selects a variable according to Failure rate based * variable ordering and assigns it to its lower bound. * * @param vars list of variables * @return assignment strategy * @implNote This is based on "Failure Based Variable Ordering Heuristics for Solving CSPs." * H. Li, M. Yin, and Z. Li, CP 2021. * https://dblp.org/rec/conf/cp/LiYL21 */ public static AbstractStrategy failureRateBasedSearch(IntVar... vars) { return new IntStrategy(vars, new FailureBased<>(vars, 0, 2), new IntDomainMin()); } /** * Assignment strategy which selects a variable according to Failure length based * variable ordering and assigns it to its lower bound. * * @param vars list of variables * @return assignment strategy * @implNote This is based on "Failure Based Variable Ordering Heuristics for Solving CSPs." * H. Li, M. Yin, and Z. Li, CP 2021. * https://dblp.org/rec/conf/cp/LiYL21 */ public static AbstractStrategy failureLengthBasedSearch(IntVar... vars) { return new IntStrategy(vars, new FailureBased<>(vars, 0, 4), new IntDomainMin()); } /** * Randomly selects a variable and assigns it to a value randomly taken in - the domain in case * the variable has an enumerated domain - {LB,UB} (one of the two bounds) in case the domain is * bounded * * @param vars list of variables * @param seed a seed for random * @return assignment strategy */ public static IntStrategy randomSearch(IntVar[] vars, long seed) { IntValueSelector value = new IntDomainRandom(seed); IntValueSelector bound = new IntDomainRandomBound(seed); IntValueSelector selector = var -> { if (var.hasEnumeratedDomain()) { return value.selectValue(var); } else { return bound.selectValue(var); } }; return intVarSearch(new Random<>(seed), selector, vars); } /** * Defines a branching strategy over the objective variable Note that it is only activated after * a first solution. This should be completed with another strategy with a larger scope. * * @param objective objective variable * @param optPolicy policy to adopt for the optimization process * @return a assignment strategy */ public static AbstractStrategy objectiveStrategy(IntVar objective, OptimizationPolicy optPolicy) { return new ObjectiveStrategy(objective, optPolicy); } // ************************************************************************************ // SOME EXAMPLES OF STRATEGIES YOU CAN BUILD // ************************************************************************************ /** * Assigns the first non-instantiated variable to its lower bound. * * @param vars list of variables * @return int strategy based on value assignments */ public static IntStrategy inputOrderLBSearch(IntVar... vars) { return intVarSearch(new InputOrder<>(vars[0].getModel()), new IntDomainMin(), vars); } /** * Assigns the first non-instantiated variable to its upper bound. * * @param vars list of variables * @return assignment strategy */ public static IntStrategy inputOrderUBSearch(IntVar... vars) { return intVarSearch(new InputOrder<>(vars[0].getModel()), new IntDomainMax(), vars); } /** * Assigns the non-instantiated variable of the smallest domain size to its lower bound. * * @param vars list of variables * @return assignment strategy */ public static IntStrategy minDomLBSearch(IntVar... vars) { return intVarSearch(new FirstFail(vars[0].getModel()), new IntDomainMin(), vars); } /** * Assigns the non-instantiated variable of the smallest domain size to its upper bound. * * @param vars list of variables * @return assignment strategy */ public static IntStrategy minDomUBSearch(IntVar... vars) { return intVarSearch(new FirstFail(vars[0].getModel()), new IntDomainMax(), vars); } // ************************************************************************************ // DEFAULT STRATEGY (COMPLETE) // ************************************************************************************ /** * Creates a default search strategy for the given model. This heuristic is complete (handles * IntVar, BoolVar, SetVar, GraphVar, and RealVar) * * @param model a model requiring a default search strategy */ public static AbstractStrategy defaultSearch(Model model) { Solver r = model.getSolver(); // 1. retrieve variables, keeping the declaration order, and put them in four groups: List livars = new ArrayList<>(); // integer and boolean variables List lsvars = new ArrayList<>(); // set variables List> lgvars = new ArrayList<>(); // graph variables List lrvars = new ArrayList<>();// real variables. Variable[] variables = model.getVars(); Variable objective = null; for (Variable var : variables) { int type = var.getTypeAndKind(); if ((type & (Variable.CSTE)) == 0) { int kind = type & Variable.KIND; switch (kind) { case Variable.BOOL: case Variable.INT: livars.add((IntVar) var); break; case Variable.SET: lsvars.add((SetVar) var); break; case Variable.GRAPH: lgvars.add((GraphVar) var); break; case Variable.REAL: lrvars.add((RealVar) var); break; default: break; // do not throw exception to allow ad hoc variable kinds } } } // 2. extract the objective variable if any (to avoid branching on it) if (r.getObjectiveManager().isOptimization()) { objective = r.getObjectiveManager().getObjective(); if ((objective.getTypeAndKind() & Variable.REAL) != 0) { //noinspection SuspiciousMethodCalls lrvars.remove(objective);// real var objective } else { assert (objective.getTypeAndKind() & Variable.INT) != 0; //noinspection SuspiciousMethodCalls livars.remove(objective);// bool/int var objective } } // 3. Creates a default search strategy for each variable kind ArrayList strats = new ArrayList<>(); if (livars.size() > 0) { strats.add(intVarSearch(livars.toArray(new IntVar[0]))); } if (lsvars.size() > 0) { strats.add(setVarSearch(lsvars.toArray(new SetVar[0]))); } if (lgvars.size() > 0) { strats.add(graphVarSearch(lgvars.toArray(new GraphVar[0]))); } if (lrvars.size() > 0) { strats.add(realVarSearch(lrvars.toArray(new RealVar[0]))); } // 4. lexico LB/UB branching for the objective variable if (objective != null) { boolean max = r.getObjectiveManager().getPolicy() == ResolutionPolicy.MAXIMIZE; if ((objective.getTypeAndKind() & Variable.REAL) != 0) { strats.add( realVarSearch(new Cyclic<>(), max ? new RealDomainMax() : new RealDomainMin(), !max, (RealVar) objective)); } else { strats.add( max ? minDomUBSearch((IntVar) objective) : minDomLBSearch((IntVar) objective)); } } // 5. avoid null pointers in case all variables are instantiated if (strats.isEmpty()) { strats.add(minDomLBSearch(model.boolVar(true))); } // 6. add last conflict return lastConflict(sequencer(strats.toArray(new AbstractStrategy[0]))); } /** *

* Create a strategy which lets Ibex terminates the solving process for the CSP, * once all integer variables have been instantiated. *

* Note that if the system is not constrained enough, there can be an infinite number of * solutions. *

* For example, solving the function
x,y in [0.0,1.0] with
x + y = 1.0
will * return x,y in [0.0,1.0] and not a single solution. *

* If one wants a unique solution, calling {@link #realVarSearch(RealVar...)} should be * considered. *

* * @param model declaring model * @return a strategy that lets Ibex terminates the solving process. */ public static AbstractStrategy ibexSolving(Model model) { //noinspection unchecked return new AbstractStrategy(model.getVars()) { final IbexDecision dec = new IbexDecision(model); @Override public Decision getDecision() { if (dec.inUse()) { return null; } else { return dec; } } }; } /** * Enum for commonly used variable selectors. * *

To declare a variable selector to be part of a search strategy, * use the following code: *

     *     {@code
     *     AbstractStrategy strat = Search.VarH.CHS.make(solver, vars, Search.VarH.MIN, true);
     *     solver.setSearch(strat);
     * 
*/ public enum VarH { /** * To select variables according Activity-based Search. * {@code valueSelector} parameter is ignored. * * @see ActivityBased */ ABS { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { return ACTIVITY.make(solver, vars, Search.ValH.DEFAULT, flushThs, last); } }, /** * To select variables according to {@link #ABS} * Values can be selected with another heuristic. * * @see ActivityBased */ ACTIVITY { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { Model model = solver.getModel(); return new ActivityBased(model, vars, valueSelector == Search.ValH.DEFAULT ? null : valueSelector.make(solver, last), 0.999d, 0.2d, 8, 1, model.getSeed()); } }, /** * To select variables according to Conflict History-based Search. * * @see ConflictHistorySearch */ CHS { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { return new IntStrategy(vars, new ConflictHistorySearch<>(vars, solver.getModel().getSeed(), flushThs), valueSelector.make(solver, last)); } }, /** * To select variables according to the size of their current domain. * * @see FirstFail */ DOM { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { return Search.intVarSearch( new FirstFail(solver.getModel()), valueSelector.make(solver, last), vars); } }, /** * To select variables to constraint weighting. * * @see DomOverWDeg */ DOMWDEG { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { return new IntStrategy(vars, new DomOverWDeg<>(vars, solver.getModel().getSeed(), flushThs), valueSelector.make(solver, last)); } }, /** * To select variables to refined constraint weighting. * * @see DomOverWDegRef */ DOMWDEGR { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { return new IntStrategy(vars, new DomOverWDegRef<>(vars, solver.getModel().getSeed(), flushThs), valueSelector.make(solver, last)); } }, /** * To select {@link Search#defaultSearch(Model)} */ DEFAULT { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { //noinspection unchecked return defaultSearch(solver.getModel()); } }, /** * To select variables according to Failure rate based variable ordering with decaying factor. */ FRBA { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { return new IntStrategy(vars, new FailureBased<>(vars, solver.getModel().getSeed(), 2), valueSelector.make(solver, last)); } }, /** * To select variables according to Failure length based variable ordering with decaying factor. */ FLBA { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { return new IntStrategy(vars, new FailureBased<>(vars, solver.getModel().getSeed(), 4), valueSelector.make(solver, last)); } }, /** * To select variables according to Impact-based Search. * {@code valueSelector} parameter is ignored. * * @see ImpactBased */ IBS { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { return IMPACT.make(solver, vars, Search.ValH.DEFAULT, flushThs, last); } }, /** * To select variables according to Impact-based Search. * Values can be selected with another heuristic. * * @see ImpactBased */ IMPACT { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { return new ImpactBased(vars, valueSelector == Search.ValH.DEFAULT ? null : valueSelector.make(solver, last), 2, 512, 2048, solver.getModel().getSeed(), false); } }, /** * To select variables according to their order in {@code vars}. */ INPUT { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { return Search.intVarSearch( new InputOrder<>(solver.getModel()), valueSelector.make(solver, last), vars); } }, /** * To select variables randomly. */ RAND { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { return Search.intVarSearch( new Random<>(solver.getModel().getSeed()), valueSelector.make(solver, last), vars); } }, MAB_CHS_DWDEG_STATIC { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { //noinspection unchecked return new MultiArmedBanditSequencer( new AbstractStrategy[]{ CHS.make(solver, vars, valueSelector, flushThs, last), DOMWDEG.make(solver, vars, valueSelector, flushThs, last) }, new Static(new double[]{.7, .3}, new java.util.Random(solver.getModel().getSeed())), (a, t) -> 0.d ); } }, MAB_CHS_DWDEG_MOSS { @Override public AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last) { final long[] pat = {0, 0}; final HashSet selected = new HashSet<>(); ToDoubleBiFunction reward = (a, t) -> { double r = Math.log(solver.getNodeCount() - pat[0]) / Math.log(VariableUtils.searchSpaceSize(selected.iterator())) //+ solver.getSolutionCount() - pat[1] ; pat[0] = solver.getNodeCount(); pat[1] = solver.getSolutionCount(); selected.clear(); return r; }; solver.plugMonitor(new IMonitorOpenNode() { @Override public void afterOpenNode() { selected.add((IntVar) solver.getDecisionPath().getLastDecision().getDecisionVariable()); } }); //noinspection unchecked return new MultiArmedBanditSequencer( new AbstractStrategy[]{ CHS.make(solver, vars, valueSelector, flushThs, last), DOMWDEG.make(solver, vars, valueSelector, flushThs, last) }, new MOSS(2), reward ); } }; /** * Declare the search strategy based on parameters * * @param solver target solver * @param vars array of integer variables * @param valueSelector the value selector enum * @param flushThs flush threshold, when reached, it flushes scores * @param last set to {@code true} to use {@link IntDomainLast} meta value strategy. * @return a search strategy on {@code IntVar[]} */ public abstract AbstractStrategy make(Solver solver, IntVar[] vars, Search.ValH valueSelector, int flushThs, boolean last); } /** * Enum for commonly used value selectors. * *

To declare a value selector to be part of a search strategy, * use the following code: *

     *     {@code
     *     AbstractStrategy strat = Search.VarH.CHS.declare(solver, vars, Search.VarH.MIN, true);
     *     solver.setSearch(strat);
     * 
*/ public enum ValH { /** * To select the best value according to the best objective bound. * * @see IntDomainBest */ BEST { @Override public IntValueSelector make(Solver solver, boolean last) { if (solver.getModel().getResolutionPolicy() == ResolutionPolicy.SATISFACTION) { return MIN.make(solver, last); } return last(solver, new IntDomainBest(), last); } }, /** * To select the best value according to the best objective bound when looking for * the first solution, then return the lowest bound. * * @see IntDomainBest * @see IntDomainMin */ BMIN { @Override public IntValueSelector make(Solver solver, boolean last) { if (solver.getModel().getResolutionPolicy() == ResolutionPolicy.SATISFACTION) { return MIN.make(solver, last); } return last(solver, new IntValueSelector() { IntValueSelector sel = new IntDomainBest(); @Override public int selectValue(IntVar var) { if (var.getModel().getSolver().getSolutionCount() > 0) { sel = new IntDomainMin(); } return sel.selectValue(var); } }, last); } }, /** * To select the best value according to the best objective bound. * * @see IntDomainBest */ BLAST { @Override public IntValueSelector make(Solver solver, boolean last) { if (solver.getModel().getResolutionPolicy() == ResolutionPolicy.SATISFACTION) { return MIN.make(solver, last); } Solution lastSol = solver.defaultSolution(); return last(solver, new IntDomainBest((v, i) -> lastSol.exists() && lastSol.getIntVal(v) == i), last); } }, /** * Return {@link #BEST}. */ DEFAULT { @Override public IntValueSelector make(Solver solver, boolean last) { return BEST.make(solver, last); } }, /** * To select the maximal value in the current domain of the selected variable. * * @see IntDomainMax */ MAX { @Override public IntValueSelector make(Solver solver, boolean last) { return last(solver, new IntDomainMax(), last); } }, /** * To select the median value in the current domain of the selected variable. * * @see IntDomainMedian */ MED { @Override public IntValueSelector make(Solver solver, boolean last) { return last(solver, new IntDomainMedian(), last); } }, /** * To select the middle value in the current domain of the selected variable with floor rounding. * * @see IntDomainMiddle */ MIDFLOOR { @Override public IntValueSelector make(Solver solver, boolean last) { return last(solver, new IntDomainMiddle(true), last); } }, /** * To select the middle value in the current domain of the selected variable with ceil rouding. * * @see IntDomainMiddle */ MIDCEIL { @Override public IntValueSelector make(Solver solver, boolean last) { return last(solver, new IntDomainMiddle(false), last); } }, /** * To select the minimal value in the current domain of the selected variable. * * @see IntDomainMin */ MIN { @Override public IntValueSelector make(Solver solver, boolean last) { return last(solver, new IntDomainMin(), last); } }, /** * To select values randomly. * * @see IntDomainRandom */ RAND { @Override public IntValueSelector make(Solver solver, boolean last) { return last(solver, new IntDomainRandom(solver.getModel().getSeed()), last); } }; /** * Build the value selector * * @param solver solver to use in * @param last set to {@code true} to use meta value selector based on last solution found. * @return a value selector */ public abstract IntValueSelector make(Solver solver, boolean last); /** * If {@code last} is set to {@code true}, add {@link IntDomainLast} meta value selector. * * @param solver the solver to record solutions from * @param selector the defined value selector * @param last use meta value selector. * @return a value selector */ IntValueSelector last(Solver solver, IntValueSelector selector, boolean last) { if (last) { // default Model model = solver.getModel(); if (model.getResolutionPolicy() == ResolutionPolicy.SATISFACTION) { return selector; } model.getSolver().attach(model.getSolver().defaultSolution()); return new IntDomainLast(model.getSolver().defaultSolution(), selector, null); } else { return selector; } } } /** * Enum for commonly used value restarting policies. * *

To declare a value selector to be part of a search strategy, * use the following code: *

     *     {@code
     *     Search.Restarts.LUBY.declare(solver, 50, 5000);
     * 
*/ public enum Restarts { /** * Define no restart strategy. * * @apiNote Does not remove or erase previously defined restart policy */ NONE { @Override public void declare(Solver solver, int cutoff, double factor, int offset) { // nothing to do } }, /** * To use a monotonic restart strategy. *

This policy will restart every {@code cutoff} failures, until {@code offset} restarts occur. * * @implNote {@code factor} is ignored. * @see MonotonicRestartStrategy */ MONOTONIC { @Override public void declare(Solver solver, int cutoff, double factor, int offset) { solver.setRestarts( count -> solver.getFailCount() >= count, new MonotonicRestartStrategy(cutoff), offset ); solver.setNoGoodRecordingFromRestarts(); } }, /** * To use a Luby restart strategy. * * @implNote {@code factor} is ignored. * @see LubyCutoffStrategy */ LUBY { @Override public void declare(Solver solver, int cutoff, double factor, int offset) { solver.setRestarts( count -> solver.getFailCount() >= count, new LubyCutoffStrategy(cutoff), offset ); solver.setNoGoodRecordingFromRestarts(); } }, /** * To use a geometric restart strategy. * * @see GeometricalCutoffStrategy */ GEOMETRIC { @Override public void declare(Solver solver, int cutoff, double factor, int offset) { solver.setRestarts( count -> solver.getFailCount() >= count, new GeometricalCutoffStrategy(cutoff, factor), offset ); solver.setNoGoodRecordingFromRestarts(); } }; public abstract void declare(Solver solver, int cutoff, double factor, int offset); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy