org.chocosolver.util.objects.graphs.UndirectedGraph Maven / Gradle / Ivy
/*
* This file is part of choco-solver, http://choco-solver.org/
*
* Copyright (c) 2022, IMT Atlantique. All rights reserved.
*
* Licensed under the BSD 4-clause license.
*
* See LICENSE file in the project root for full license information.
*/
package org.chocosolver.util.objects.graphs;
import org.chocosolver.solver.Model;
import org.chocosolver.util.objects.setDataStructures.ISet;
import org.chocosolver.util.objects.setDataStructures.ISetIterator;
import org.chocosolver.util.objects.setDataStructures.SetFactory;
import org.chocosolver.util.objects.setDataStructures.SetType;
import org.chocosolver.util.objects.setDataStructures.dynamic.SetDifference;
import org.chocosolver.util.objects.setDataStructures.dynamic.SetIntersection;
import org.chocosolver.util.objects.setDataStructures.dynamic.SetUnion;
import java.util.stream.IntStream;
/**
* Specific implementation of an undirected graph
*
* @author Jean-Guillaume Fages, Xavier Lorca
*/
public class UndirectedGraph implements IGraph {
//***********************************************************************************
// VARIABLES
//***********************************************************************************
private final ISet[] neighbors;
private ISet nodes;
private final int n;
private final SetType edgeSetType;
private final SetType nodeSetType;
//***********************************************************************************
// CONSTRUCTORS
//***********************************************************************************
/**
* Creates an empty backtrable undirected graph.
* Allocates memory for n nodes (but they should then be added explicitly,
* unless allNodes is true).
*
* @param model model providing the backtracking environment
* @param n max number of nodes
* @param nodeSetType data structure storing for nodes
* @param edgeSetType data structure storing for node neighbors
* @param allNodes true iff all nodes will always remain in the graph
*/
public UndirectedGraph(Model model, int n, SetType nodeSetType, SetType edgeSetType, boolean allNodes) {
this.edgeSetType = edgeSetType;
this.nodeSetType = nodeSetType;
this.n = n;
neighbors = new ISet[n];
for (int i = 0; i < n; i++) {
neighbors[i] = SetFactory.makeStoredSet(this.edgeSetType, 0, model);
}
if (allNodes) {
this.nodes = SetFactory.makeConstantSet(0,n-1);
} else {
this.nodes = SetFactory.makeStoredSet(this.nodeSetType, 0, model);
}
}
/**
* Creates an empty backtrable undirected graph.
* Allocates memory for n nodes (but they should then be added explicitly,
* unless allNodes is true).
*
* Nodes are stored as BITSET
*
* @param model model providing the backtracking environment
* @param n max number of nodes
* @param edgeSetType data structure storing for node neighbors
* @param allNodes true iff all nodes will always remain in the graph
*/
public UndirectedGraph(Model model, int n, SetType edgeSetType, boolean allNodes) {
this(model, n, SetType.BITSET, edgeSetType, allNodes);
}
/**
* Creates an empty (non-backtrackable) undirected graph.
* Allocates memory for n nodes (but they should then be added explicitly,
* unless allNodes is true).
*
* @param n max number of nodes
* @param nodeSetType data structure storing for nodes
* @param edgeSetType data structure used for storing node neighbors
* @param allNodes true iff all nodes will always remain in the graph
*/
public UndirectedGraph(int n, SetType nodeSetType, SetType edgeSetType, boolean allNodes) {
this.edgeSetType = edgeSetType;
this.nodeSetType = nodeSetType;
this.n = n;
neighbors = new ISet[n];
for (int i = 0; i < n; i++) {
neighbors[i] = SetFactory.makeSet(edgeSetType, 0);
}
if (allNodes) {
this.nodes = SetFactory.makeConstantSet(0,n-1);
} else {
this.nodes = SetFactory.makeSet(nodeSetType, 0);
}
}
/**
* Creates an empty (non-backtrackable) undirected graph.
* Allocates memory for n nodes (but they should then be added explicitly,
* unless allNodes is true).
*
* Nodes are stored as BITSET
*
* @param n max number of nodes
* @param edgeSetType data structure used for storing node neighbors
* @param allNodes true iff all nodes will always remain in the graph
*/
public UndirectedGraph(int n, SetType edgeSetType, boolean allNodes) {
this(n, SetType.BITSET, edgeSetType, allNodes);
}
/**
* Construct a read-only copy of another graph
* @param g the graph to copy
*/
public UndirectedGraph(UndirectedGraph g) {
this.nodeSetType = SetType.FIXED_ARRAY;
this.edgeSetType = SetType.FIXED_ARRAY;
this.n = g.getNbMaxNodes();
this.nodes = SetFactory.makeConstantSet(g.getNodes().toArray());
neighbors = new ISet[n];
for (int i = 0; i < n; i++) {
neighbors[i] = SetFactory.makeConstantSet(g.getNeighborsOf(i).toArray());
}
}
// Subgraph constructors
/**
* CONSTRUCTOR FOR BACKTRACKABLE NODE INDUCED SUBGRAPHS:
*
* Construct a backtrackable graph G' = (V', E') from another graph G = (V, E) such that:
* V' = V \ nodes (set difference) if exclude = true, else V' = V \cap nodes (set intersection)
* E' = { (x, y) \in E | x \in V' \land y \in V' }.
*
* with nodes a fixed set of nodes.
*
* @param model the model
* @param g the graph to construct a subgraph from
* @param nodes the set of nodes to construct the subgraph from (see exclude parameter)
* @param exclude if true, V' = V \ nodes (set difference), else V' = V \cap nodes (set intersection)
*/
public UndirectedGraph(Model model, UndirectedGraph g, ISet nodes, boolean exclude) {
this.nodeSetType = SetType.DYNAMIC;
this.edgeSetType = SetType.DYNAMIC;
this.n = g.getNbMaxNodes();
if (exclude) {
this.nodes = new SetDifference(model, g.getNodes(), nodes);
} else {
this.nodes = new SetIntersection(model, g.getNodes(), nodes);
}
neighbors = new ISet[n];
for (int i = 0; i < n; i++) {
if (exclude) {
neighbors[i] = new SetDifference(model, g.getNeighborsOf(i), nodes);
} else {
neighbors[i] = new SetIntersection(model, g.getNeighborsOf(i), nodes);
}
}
}
/**
* CONSTRUCTOR FOR BACKTRACKABLE NODE INDUCED SUBGRAPHS:
*
* /!\ Optimized for graph views instantiation: avoids unnecessary dynamic data structures /!\
*
* Construct a backtrackable graph G' = (V', E') from another graph G = (V, E) such that:
* V' = V \ nodes (set difference) if exclude = true, else V' = V \cap nodes (set intersection)
* E' = { (x, y) \in E | x \in V' \land y \in V' }.
*
* with nodes a fixed set of nodes.
*
* @param model the model
* @param g the graph to construct a subgraph from
* @param UB If used to instantiate a graph view: the observed graph variable upper bound, used to detect whether
* a dynamic data structure is necessary for node and neighbors sets.
* @param nodes the set of nodes to construct the subgraph from (see exclude parameter)
* @param exclude if true, V' = V \ nodes (set difference), else V' = V \cap nodes (set intersection)
*/
public UndirectedGraph(Model model, UndirectedGraph g, UndirectedGraph UB, ISet nodes, boolean exclude) {
this.nodeSetType = SetType.DYNAMIC;
this.edgeSetType = SetType.DYNAMIC;
this.n = g.getNbMaxNodes();
boolean needDynamic = false;
ISet neighNeeded = UB.nodes;
if (exclude) {
for (int i : nodes) {
if (UB.getNodes().contains(i)) {
needDynamic = true;
this.nodes = new SetDifference(model, g.getNodes(), nodes);
neighNeeded = new SetDifference(model, UB.getNodes(), nodes);
break;
}
}
} else {
for (int i : UB.getNodes()) {
if (!nodes.contains(i)) {
needDynamic = true;
SetType nodeSetType = g.getNodeSetType();
this.nodes = new SetIntersection(model, nodeSetType, 0, g.getNodes(), nodes);
neighNeeded = new SetIntersection(model, nodeSetType, 0, UB.getNodes(), nodes);
break;
}
}
}
if (!needDynamic) {
this.nodes = g.nodes;
}
neighbors = new ISet[n];
for (int i : neighNeeded) {
needDynamic = false;
if (exclude) {
for (int j : nodes) {
if (UB.getNeighborsOf(i).contains(j)) {
needDynamic = true;
neighbors[i] = new SetDifference(model, g.getNeighborsOf(i), nodes);
break;
}
}
} else {
for (int j : UB.getNeighborsOf(i)) {
if (!nodes.contains(j)) {
needDynamic = true;
SetType edgeSetType = g.getEdgeSetType();
neighbors[i] = new SetIntersection(model, edgeSetType, 0, g.getNeighborsOf(i), nodes);
break;
}
}
}
if (!needDynamic) {
neighbors[i] = g.neighbors[i];
}
}
}
/**
* GENERIC CONSTRUCTOR FOR BACKTRACKABLE EDGE INDUCED SUBGRAPHS:
*
* Construct a backtrackable graph G = (V', E') from G = (V, E) such that:
* V' = { x \in V | \exists y \in V s.t. (x, y) \in E' }
* E' = E \ edges (set difference) if exclude = true, else E' = E \cap edges (set intersection).
*
* with edges a fixed set of edges.
*
* @param model the model
* @param g the graph to construct a subgraph from
* @param edges the set of edges to construct the subgraph from (see exclude parameter)
* @param exclude if true, E' = E \ edges (set difference), else E' = E \cap edges (set intersection)
*/
public UndirectedGraph(Model model, UndirectedGraph g, ISet[] edges, boolean exclude) {
assert edges.length == g.getNbMaxNodes();
this.nodeSetType = SetType.DYNAMIC;
this.edgeSetType = SetType.DYNAMIC;
this.n = g.getNbMaxNodes();
neighbors = new ISet[n];
for (int i = 0; i < n; i++) {
if (exclude) {
neighbors[i] = new SetDifference(model, g.getNeighborsOf(i), edges[i]);
} else {
neighbors[i] = new SetIntersection(model, g.getNeighborsOf(i), edges[i]);
}
}
this.nodes = new SetUnion(model, neighbors);
}
/**
* GENERIC CONSTRUCTOR FOR BACKTRACKABLE EDGE INDUCED SUBGRAPHS:
*
* /!\ Optimized for graph views instantiation: avoids unnecessary dynamic data structures /!\
*
* Construct a backtrackable graph G = (V', E') from G = (V, E) such that:
* V' = { x \in V | \exists y \in V s.t. (x, y) \in E' }
* E' = E \ edges (set difference) if exclude = true, else E' = E \cap edges (set intersection).
*
* with edges a fixed set of edges.
*
* @param model the model
* @param g the graph to construct a subgraph from
* @param UB If used to instantiate a graph view: the observed graph variable upper bound, used to detect whether
* a dynamic data structure is necessary for node and neighbors sets.
* @param edges the set of edges to construct the subgraph from (see exclude parameter)
* @param exclude if true, E' = E \ edges (set difference), else E' = E \cap edges (set intersection)
*/
public UndirectedGraph(Model model, UndirectedGraph g, UndirectedGraph UB, ISet[] edges, boolean exclude) {
assert edges.length == g.getNbMaxNodes();
this.nodeSetType = SetType.DYNAMIC;
this.edgeSetType = SetType.DYNAMIC;
this.n = g.getNbMaxNodes();
neighbors = new ISet[n];
boolean nodeNeedDynamic = false;
for (int i = 0; i < n; i++) {
boolean needDynamic = false;
if (exclude) {
for (int j : edges[i]) {
if (UB.getNeighborsOf(i).contains(j)) {
needDynamic = true;
nodeNeedDynamic = true;
neighbors[i] = new SetDifference(model, g.getNeighborsOf(i), edges[i]);
break;
}
}
} else {
for (int j : UB.getNeighborsOf(i)) {
if (!edges[i].contains(j)) {
needDynamic = true;
nodeNeedDynamic = true;
neighbors[i] = new SetIntersection(model, g.getEdgeSetType(), 0, g.getNeighborsOf(i), edges[i]);
break;
}
}
}
if (!needDynamic) {
neighbors[i] = g.neighbors[i];
}
}
if (nodeNeedDynamic) {
this.nodes = new SetUnion(model, g.nodeSetType, 0, neighbors);
} else {
this.nodes = g.nodes;
}
}
/**
* GENERIC CONSTRUCTOR FOR BACKTRACKABLE EDGE INDUCED SUBGRAPHS:
*
* Construct a backtrackable graph G = (V', E') from G = (V, E) such that:
* V' = { x \in V | \exists y \in V s.t. (x, y) \in E' }
* E' = E \ edges (set difference) if exclude = true, else E' = E \cap edges (set intersection).
*
* with edges a fixed set of edges.
*
* @param model the model
* @param g the graph to construct a subgraph from
* @param edges the set of edges (array of couples) to construct the subgraph from (see exclude parameter)
* @param exclude if true, E' = E \ edges (set difference), else E' = E \cap edges (set intersection)
*/
public UndirectedGraph(Model model, UndirectedGraph g, int[][] edges, boolean exclude) {
this(model, g, edgesArrayToEdgesSets(g.getNbMaxNodes(), edges), exclude);
}
public UndirectedGraph(Model model, UndirectedGraph g, UndirectedGraph UB, int[][] edges, boolean exclude) {
this(model, g, UB, edgesArrayToEdgesSets(g.getNbMaxNodes(), edges), exclude);
}
// Graph arithmetic constructors
/**
* Construct an undirected graph G = (V, E) as the union of a set of undirected graphs {G_1 = (V_1, E_1), ..., G_k = (V_k, E_k)}, i.e. :
* V = V_1 \cup ... \cup V_k (\cup = set union);
* E = E_1 \cup ... \cup E_k.
* @param model the model
* @param graphs the graphs to construct the union graph from
*/
public UndirectedGraph(Model model, UndirectedGraph... graphs) {
this.nodeSetType = SetType.DYNAMIC;
this.edgeSetType = SetType.DYNAMIC;
this.n = IntStream.range(0, graphs.length).map(i -> graphs[i].getNbMaxNodes()).max().getAsInt();
ISet[] nodeSets = new ISet[graphs.length];
for (int i = 0; i < graphs.length; i++) {
nodeSets[i] = graphs[i].getNodes();
}
this.nodes = new SetUnion(model, nodeSets);
neighbors = new ISet[n];
for (int i = 0; i < n; i++) {
ISet[] neighSet = new ISet[graphs.length];
for (int j = 0; j < graphs.length; j++) {
neighSet[j] = graphs[j].getNeighborsOf(i);
}
neighbors[i] = new SetUnion(model, neighSet);
}
}
/**
* Construct an undirected graph G = (V, E) as the union of a set of undirected graphs {G_1 = (V_1, E_1), ..., G_k = (V_k, E_k)}, i.e. :
* V = V_1 \cup ... \cup V_k (\cup = set union);
* E = E_1 \cup ... \cup E_k.
* @param model the model
* @param graphs the graphs to construct the union graph from
* @param additionalNodes additional nodes to include in the graph
* @param additionalNeigh additional edges to include in the graph
*/
public UndirectedGraph(Model model, ISet additionalNodes, ISet[] additionalNeigh, UndirectedGraph... graphs) {
this.nodeSetType = SetType.DYNAMIC;
this.edgeSetType = SetType.DYNAMIC;
this.n = IntStream.range(0, graphs.length).map(i -> graphs[i].getNbMaxNodes()).max().getAsInt();
ISet[] nodeSets = new ISet[graphs.length + 1];
for (int i = 0; i < graphs.length; i++) {
nodeSets[i] = graphs[i].getNodes();
}
nodeSets[graphs.length] = additionalNodes;
this.nodes = new SetUnion(model, nodeSets);
neighbors = new ISet[n];
for (int i = 0; i < n; i++) {
ISet[] neighSet = new ISet[graphs.length + 1];
for (int j = 0; j < graphs.length; j++) {
neighSet[j] = graphs[j].getNeighborsOf(i);
}
neighSet[graphs.length] = additionalNeigh[i];
neighbors[i] = new SetUnion(model, neighSet);
}
}
public static ISet[] edgesArrayToEdgesSets(int n, int[][] edges) {
ISet[] neigh = new ISet[n];
for (int i = 0; i < n; i++) {
int finalI = i;
neigh[i] = SetFactory.makeConstantSet(IntStream.range(0, edges.length)
.filter(v -> {
assert edges[v].length == 2;
return edges[v][0] == finalI || edges[v][1] == finalI;
})
.map(v -> {
if (edges[v][0] == finalI) {
return edges[v][1];
} else {
return edges[v][0];
}
}).toArray()
);
}
return neigh;
}
//***********************************************************************************
// METHODS
//***********************************************************************************
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("nodes : \n").append(nodes).append("\n");
sb.append("neighbors : \n");
for (int i : nodes) {
sb.append(i).append(" -> {");
for (int j : neighbors[i]) {
sb.append(j).append(" ");
}
sb.append("}\n");
}
return sb.toString();
}
@Override
/**
* @inheritedDoc
*/
public int getNbMaxNodes() {
return n;
}
@Override
/**
* @inheritedDoc
*/
public ISet getNodes() {
return nodes;
}
@Override
/**
* @inheritedDoc
*/
public SetType getEdgeSetType() {
return edgeSetType;
}
@Override
/**
* @inheritedDoc
*/
public SetType getNodeSetType() {
return nodeSetType;
}
@Override
public boolean addNode(int x) {
return nodes.add(x);
}
@Override
public boolean removeNode(int x) {
if (nodes.remove(x)) {
ISetIterator nei = getNeighborsOf(x).iterator();
while (nei.hasNext()) {
neighbors[nei.nextInt()].remove(x);
}
neighbors[x].clear();
return true;
}
return false;
}
/**
* Add edge (x,y) to the graph
*
* @param x a node index
* @param y a node index
* @return true iff (x,y) was not already in the graph
*/
public boolean addEdge(int x, int y) {
addNode(x);
addNode(y);
if (x == y) {
return neighbors[x].add(y);
}
if (neighbors[x].add(y)) {
boolean b = neighbors[y].add(x);
assert b : "asymmetric adjacency matrix in an undirected graph";
return true;
}
return false;
}
/**
* test whether edge (x,y) is in the graph or not
*
* @param x a node index
* @param y a node index
* @return true iff edge (x,y) is in the graph
*/
public boolean containsEdge(int x, int y) {
if (neighbors[x].contains(y)) {
assert (neighbors[y].contains(x)) : "asymmetric adjacency matrix in an undirected graph";
return true;
}
return false;
}
/**
* Remove edge (x,y) from the graph
*
* @param x a node index
* @param y a node index
* @return true iff (x,y) was in the graph
*/
public boolean removeEdge(int x, int y) {
if (x == y) {
return neighbors[y].remove(x);
}
if (neighbors[x].remove(y)) {
boolean b = neighbors[y].remove(x);
assert b : "asymmetric adjacency matrix in an undirected graph";
return true;
}
return false;
}
/**
* Get neighbors of node x
*
* @param x node index
* @return neighbors of x (predecessors and/or successors)
*/
public ISet getNeighborsOf(int x) {
return neighbors[x];
}
/**
* @deprecated For an undirected graph, this method is equivalent to getNeighborsOf.
*/
@Deprecated
@Override
public ISet getPredecessorsOf(int x) {
return neighbors[x];
}
/**
* @deprecated For an undirected graph, this method is equivalent to getNeighborsOf.
*/
@Deprecated
@Override
public ISet getSuccessorsOf(int x) {
return neighbors[x];
}
@Override
public boolean isDirected() {
return false;
}
/**
* Structural equality test between two undirected graph vars.
* Only existing nodes and edges are tested, i.e. graphs can have different underlying set data structures,
* and different attributes such as nbMaxNodes, allNodes, stored or not.
* @param other
* @return true iff `this` and `other` contains exactly the same nodes and same edges.
*/
public boolean equals(UndirectedGraph other) {
if (getNodes().size() != other.getNodes().size()) {
return false;
}
for (int i : getNodes()) {
if (!other.containsNode(i)) {
return false;
}
if (getNeighborsOf(i).size() != other.getNeighborsOf(i).size()) {
return false;
}
for (int j : getNeighborsOf(i)) {
if (!other.containsEdge(i, j)) {
return false;
}
}
}
return true;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy