org.chocosolver.util.tools.RealUtils Maven / Gradle / Ivy
/*
* This file is part of choco-solver, http://choco-solver.org/
*
* Copyright (c) 2022, IMT Atlantique. All rights reserved.
*
* Licensed under the BSD 4-clause license.
*
* See LICENSE file in the project root for full license information.
*/
package org.chocosolver.util.tools;
import org.chocosolver.solver.expression.continuous.arithmetic.RealIntervalConstant;
import org.chocosolver.util.objects.RealInterval;
/**
* Some tools for float computing.
* Inspired from IAMath : interval.sourceforge.net
*
*
* @author Charles Prud'homme
* @author Guillaum Rochart
* @since 23/01/2020
*/
public class RealUtils {
private static final double ZERO = 0.0;
private static final double NEG_ZER0 = 0.0 * -1.0;
/**
* Returns the double value just after 'x'.
* @param x a double
* @return the floating point just after 'x'.
*/
public static double nextFloat(double x) {
if (x < 0) {
return Double.longBitsToDouble(Double.doubleToLongBits(x) - 1);
} else if (x == 0) {
return Double.longBitsToDouble(1);
} else if (x < Double.POSITIVE_INFINITY) {
return Double.longBitsToDouble(Double.doubleToLongBits(x) + 1);
} else {
return x; // nextFloat(infty) = infty
}
}
/**
* Returns the double value just before 'x'.
* @param x a double
* @return the floating point just before 'x'.
*/
public static double prevFloat(double x) {
if (x == 0.0) {
return -nextFloat(0.0);
} else {
return -nextFloat(-x);
}
}
/**
* Returns an interval that represents the result of an addition between interval 'x' and 'y'.
* [l(x)+l(y), u(x)+u(y)]
* @param x an interval
* @param y an interval
* @return an interval that represents the result of the addition 'x + y'
*/
public static RealInterval add(RealInterval x, RealInterval y) {
return new RealIntervalConstant(prevFloat(x.getLB() + y.getLB()), nextFloat(x.getUB() + y.getUB()));
}
/**
* Returns an interval that represents the result of a difference between interval 'x' and 'y'.
* [l(x)-u(y), u(x)-l(y)]
* @param x an interval
* @param y an interval
* @return an interval that represents the result of the difference : 'x - y'
*/
public static RealInterval sub(RealInterval x, RealInterval y) {
return new RealIntervalConstant(prevFloat(x.getLB() - y.getUB()), nextFloat(x.getUB() - y.getLB()));
}
/**
* Returns an interval that represents the result of a multiplication between interval 'x' and 'y'.
* The results depends on whether 'x' or 'y' overlap 0.0 or not.
* @param x an interval
* @param y an interval
* @return an interval that represents the result of the multiplication : 'x * y'
*/
public static RealInterval mul(RealInterval x, RealInterval y) {
double i, s;
if ((x.getLB() == 0.0 && x.getUB() == 0.0) || (y.getLB() == 0.0 && y.getUB() == 0.0)) {
i = NEG_ZER0; // Ca peut etre utile pour rejoindre des intervalles : si on veut aller de -5 a 0,
s = 0.0;
// ca sera 0-.
} else {
if (x.getLB() >= 0.0) {
if (y.getLB() >= 0.0) {
i = Math.max(ZERO, prevFloat(x.getLB() * y.getLB())); // Si x et y positifs, on ne veut pas etre n?gatif !
s = nextFloat(x.getUB() * y.getUB());
} else if (y.getUB() <= 0.0) {
i = prevFloat(x.getUB() * y.getLB());
s = Math.min(ZERO, nextFloat(x.getLB() * y.getUB()));
} else {
i = prevFloat(x.getUB() * y.getLB());
s = nextFloat(x.getUB() * y.getUB());
}
} else if (x.getUB() <= 0.0) {
if (y.getLB() >= 0.0) {
i = prevFloat(x.getLB() * y.getUB());
s = Math.min(ZERO, nextFloat(x.getUB() * y.getLB()));
} else if (y.getUB() <= 0.0) {
i = Math.max(ZERO, prevFloat(x.getUB() * y.getUB()));
s = nextFloat(x.getLB() * y.getLB());
} else {
i = prevFloat(x.getLB() * y.getUB());
s = nextFloat(x.getLB() * y.getLB());
}
} else {
if (y.getLB() >= 0.0) {
i = prevFloat(x.getLB() * y.getUB());
s = nextFloat(x.getUB() * y.getUB());
} else if (y.getUB() <= 0.0) {
i = prevFloat(x.getUB() * y.getLB());
s = nextFloat(x.getLB() * y.getLB());
} else {
i = Math.min(prevFloat(x.getLB() * y.getUB()),
prevFloat(x.getUB() * y.getLB()));
s = Math.max(nextFloat(x.getLB() * y.getLB()),
nextFloat(x.getUB() * y.getUB()));
}
}
}
return new RealIntervalConstant(i, s);
}
/**
* Returns an interval that represents the result of a division of 'x' by 'y'.
* The results depends on whether 'x' or 'y' overlap 0.0 or not.
* @param x an interval
* @param y an interval
* @return an interval that represents the result of the division : 'x / y'.
*/
public static RealInterval odiv(RealInterval x, RealInterval y) {
if (y.getLB() >= 0.0 && y.getUB() <= 0.0) {
throw new ArithmeticException("the divisor is 0");
} else {
double yl = y.getLB();
double yh = y.getUB();
double i, s;
i = Double.NEGATIVE_INFINITY;
s = Double.POSITIVE_INFINITY;
if (yh == 0.0) yh = NEG_ZER0;
if (x.getLB() >= 0.0) {
if (yl >= 0.0) {
i = Math.max(ZERO, prevFloat(x.getLB() / yh));
s = nextFloat(x.getUB() / yl);
} else if (yh <= 0.0) { // yh <= 0
i = prevFloat(x.getUB() / yh);
s = Math.min(ZERO, nextFloat(x.getLB() / yl));
} // else skip : 0 in y
} else if (x.getUB() <= 0.0) {
if (yl >= 0.0) {
i = prevFloat(x.getLB() / yl);
s = Math.min(ZERO, nextFloat(x.getUB() / yh));
} else if (yh <= 0.0) { // yh <= 0
i = Math.max(ZERO, prevFloat(x.getUB() / yl));
s = nextFloat(x.getLB() / yh);
} // else skip : 0 in y
} else {
if (yl >= 0.0) {
i = prevFloat(x.getLB() / yl);
s = nextFloat(x.getUB() / yl);
} else if (yh <= 0.0) { // yh <= 0
i = prevFloat(x.getUB() / yh);
s = nextFloat(x.getLB() / yh);
} // else skip : 0 in y
}
return new RealIntervalConstant(i, s);
}
}
/**
* Returns an interval that represents the result of a division of 'x' by 'y'.
* 'res' is the one that will intersect the resulting interval
* and is given to provide sharpest interval when 0.0 is overlapped.
* @param x an interval
* @param y an interval
* @return an interval that represents the result of the division : 'x / y'.
*/
public static RealInterval odiv_wrt(RealInterval x, RealInterval y, RealInterval res) {
if (y.getLB() > 0.0 || y.getUB() < 0.0) { // y != 0
return odiv(x, y);
} else {
double resl = res.getLB();
double resh = res.getUB();
if (x.getLB() >= 0.0) {
double tmp_neg = nextFloat(x.getLB() / y.getLB()); // la plus grande valeur negative
double tmp_pos = prevFloat(x.getLB() / y.getUB()); // la plus petite valeur positive
if ((resl > tmp_neg || resl == 0.0) && resl < tmp_pos) resl = tmp_pos;
if ((resh < tmp_pos || resh == 0.0) && resh > tmp_neg) resh = tmp_neg;
} else if (x.getUB() <= 0.0) {
double tmp_neg = nextFloat(x.getUB() / y.getUB());
double tmp_pos = nextFloat(x.getUB() / y.getLB());
if ((resl > tmp_neg || resl == 0.0) && resl < tmp_pos) resl = tmp_pos;
if ((resh < tmp_pos || resh == 0.0) && resh > tmp_neg) resh = tmp_neg;
}
return new RealIntervalConstant(resl, resh);
}
}
/**
* Given an interval 'i = [a,b]' returns an interval [a, a + (b-a)/2].
* @param i an interval
* @return the first half of 'i'
*/
public static RealInterval firstHalf(RealInterval i) {
double inf = i.getLB();
if (inf == Double.NEGATIVE_INFINITY) {
inf = -Double.MAX_VALUE;
}
double sup = i.getUB();
if (sup == Double.POSITIVE_INFINITY) {
sup = Double.MAX_VALUE;
}
return new RealIntervalConstant(i.getLB(), inf + sup / 2.0 - inf / 2.0);
}
/**
* Given an interval 'i = [a,b]' returns an interval [a + (b-a)/2, b].
* @param i an interval
* @return the second half of 'i'
*/
public static RealInterval secondHalf(RealInterval i) {
double inf = i.getLB();
if (inf == Double.NEGATIVE_INFINITY) {
inf = -Double.MAX_VALUE;
}
double sup = i.getUB();
if (sup == Double.POSITIVE_INFINITY) {
sup = Double.MAX_VALUE;
}
return new RealIntervalConstant(inf + sup / 2.0 - inf / 2.0, i.getUB());
}
private static double iPower_lo(double x, int p) { // TODO : to check !
// x >= 0 et p > 1 entier
if (x == 0) return 0;
if (x == 1) return 1;
return prevFloat(Math.exp(prevFloat(p * prevFloat(Math.log(x)))));
}
private static double iPower_up(double x, int p) {
if (x == 0) return 0;
if (x == 1) return 1;
return nextFloat(Math.exp(nextFloat(p * nextFloat(Math.log(x)))));
}
private static RealInterval evenIPower(RealInterval i, int p) {
double inf, sup;
if (i.getLB() >= 0.0) {
if (i.getLB() == Double.POSITIVE_INFINITY) {
inf = Double.POSITIVE_INFINITY;
sup = Double.POSITIVE_INFINITY;
} else {
inf = iPower_lo(i.getLB(), p);
if (i.getUB() == Double.POSITIVE_INFINITY) {
sup = Double.POSITIVE_INFINITY;
} else {
sup = iPower_up(i.getUB(), p);
}
}
} else if (i.getUB() <= 0.0) {
if (i.getUB() == Double.NEGATIVE_INFINITY) {
inf = Double.POSITIVE_INFINITY;
sup = Double.POSITIVE_INFINITY;
} else {
inf = iPower_lo(-i.getUB(), p);
if (i.getLB() == Double.NEGATIVE_INFINITY) {
sup = Double.POSITIVE_INFINITY;
} else {
sup = iPower_up(-i.getLB(), p);
}
}
} else {
inf = 0;
if (i.getLB() == Double.NEGATIVE_INFINITY ||
i.getUB() == Double.POSITIVE_INFINITY) {
sup = Double.POSITIVE_INFINITY;
} else {
sup = Math.max(iPower_up(-i.getLB(), p),
iPower_up(i.getUB(), p));
}
}
return new RealIntervalConstant(inf, sup);
}
private static RealInterval oddIPower(RealInterval i, int p) {
double inf, sup;
if (i.getLB() >= 0.0) {
if (i.getLB() == Double.POSITIVE_INFINITY) {
inf = Double.POSITIVE_INFINITY;
sup = Double.POSITIVE_INFINITY;
} else {
inf = iPower_lo(i.getLB(), p);
if (i.getUB() == Double.POSITIVE_INFINITY) {
sup = Double.POSITIVE_INFINITY;
} else {
sup = iPower_up(i.getUB(), p);
}
}
} else if (i.getUB() <= 0.0) {
if (i.getUB() == Double.NEGATIVE_INFINITY) {
inf = Double.NEGATIVE_INFINITY;
sup = Double.NEGATIVE_INFINITY;
} else {
sup = -iPower_lo(-i.getUB(), p);
if (i.getLB() == Double.NEGATIVE_INFINITY) {
inf = Double.NEGATIVE_INFINITY;
} else {
inf = -iPower_up(-i.getLB(), p);
}
}
} else {
if (i.getLB() == Double.NEGATIVE_INFINITY) {
inf = Double.NEGATIVE_INFINITY;
} else {
inf = -iPower_up(-i.getLB(), p);
}
if (i.getUB() == Double.POSITIVE_INFINITY) {
sup = Double.POSITIVE_INFINITY;
} else {
sup = iPower_up(i.getUB(), p);
}
}
return new RealIntervalConstant(inf, sup);
}
/**
* Returns an interval that represents the result of 'i^p', where 'p' is an integer.
* The results depends on whether 'p' is odd or even.
* @param i an interval
* @param p an integer
* @return an interval that represents the result of : 'i^p'.
*/
public static RealInterval iPower(RealInterval i, int p) {
if (p <= 1) {
throw new UnsupportedOperationException();
}
if (p % 2 == 0) { // pair
return evenIPower(i, p);
} else { // impair
return oddIPower(i, p);
}
}
private static double iRoot_lo(double x, int p) { // TODO : to check !!
double d_lo = prevFloat(1.0 / (double) p);
double d_hi = nextFloat(1.0 / (double) p);
if (x == Double.POSITIVE_INFINITY) {
return Double.POSITIVE_INFINITY;
} else if (x == 0)
return 0;
else if (x == 1)
return 1;
else if (x < 1)
return prevFloat(Math.exp(prevFloat(d_hi * prevFloat(Math.log(x)))));
else
return prevFloat(Math.exp(prevFloat(d_lo * prevFloat(Math.log(x)))));
}
private static double iRoot_up(double x, int p) {
double d_lo = prevFloat(1.0 / (double) p);
double d_hi = nextFloat(1.0 / (double) p);
if (x == Double.POSITIVE_INFINITY) {
return Double.POSITIVE_INFINITY;
} else if (x == 0)
return 0;
else if (x == 1)
return 1;
else if (x < 1)
return nextFloat(Math.exp(nextFloat(d_lo * nextFloat(Math.log(x)))));
else
return nextFloat(Math.exp(nextFloat(d_hi * nextFloat(Math.log(x)))));
}
private static RealInterval evenIRoot(RealInterval i, int p) {
if (i.getUB() < 0) {
System.err.println("Erreur !!");
}
double inf = i.getLB() < 0. ? 0. : iRoot_lo(i.getLB(), p);
double sup = iRoot_up(i.getUB(), p);
return new RealIntervalConstant(inf, sup);
}
private static RealInterval evenIRoot(RealInterval i, int p, RealInterval res) {
if (i.getUB() < 0) {
System.err.println("Erreur !!");
}
double inf, sup;
if (i.getLB() < 0)
inf = 0;
else
inf = iRoot_lo(i.getLB(), p);
sup = iRoot_up(i.getUB(), p);
if (res.getUB() < inf)
return new RealIntervalConstant(-sup, -inf);
else if (res.getLB() > sup)
return new RealIntervalConstant(inf, sup);
else
return new RealIntervalConstant(-sup, sup);
}
private static RealInterval oddIRoot(RealInterval i, int p) {
double inf, sup;
if (i.getLB() >= 0) {
inf = iRoot_lo(i.getLB(), p);
} else {
inf = -iRoot_up(-i.getLB(), p);
}
if (i.getUB() >= 0) {
sup = iRoot_up(i.getUB(), p);
} else {
sup = -iRoot_lo(-i.getUB(), p);
}
return new RealIntervalConstant(inf, sup);
}
/**
* Returns an interval that represents the result of 'i^(1/p)', where 'p' is an integer.
* The results depends on whether 'p' is odd or even.
* @param i an interval
* @param p an integer
* @return an interval that represents the result of : 'i^(1/p)'.
*/
public static RealInterval iRoot(RealInterval i, int p) {
if (p <= 1) {
throw new UnsupportedOperationException();
}
if (p % 2 == 0) {
return evenIRoot(i, p);
} else {
return oddIRoot(i, p);
}
}
/**
* Returns an interval that represents the result of 'i^(1/p)', where 'p' is an integer.
* The results depends on whether 'p' is odd or even.
* 'res' is the one that will intersect the resulting interval
* and is given to provide sharpest interval when 0.0 is overlapped.
* @param i an interval
* @param p an integer
* @param res interval that will intersect the resulting interval
* @return an interval that represents the result of : 'i^(1/p)'.
*/
public static RealInterval iRoot(RealInterval i, int p, RealInterval res) {
if (p <= 1) {
throw new UnsupportedOperationException();
}
if (p % 2 == 0) {
return evenIRoot(i, p, res);
} else {
return oddIRoot(i, p);
}
}
private static RealInterval sinRange(int a, int b) {
switch (4 * a + b) {
case 1:
return new RealIntervalConstant(1.0, 1.0);
case 2:
case 13:
return new RealIntervalConstant(0.0, 1.0);
case 6:
case 12:
return new RealIntervalConstant(0.0, 0.0);
case 7:
case 8:
return new RealIntervalConstant(-1.0, 0.0);
case 11:
return new RealIntervalConstant(-1.0, -1.0);
default:
throw new UnsupportedOperationException();
}
}
/**
* Returns an interval that represents the result of 'cos(i)'.
* @param i an interval
* @return the result of 'cos(i)'
*/
public static RealInterval cos(RealInterval i) {
if (i.getUB() - i.getLB() > prevFloat(1.5 * prevFloat(Math.PI))) {
return new RealIntervalConstant(-1.0, 1.0);
}
int nlo, nup;
if (i.getLB() >= 0) {
nlo = (int) Math.floor(prevFloat(prevFloat(i.getLB() * 2.0) / nextFloat(Math.PI)));
} else {
nlo = (int) Math.floor(prevFloat(prevFloat(i.getLB() * 2.0) / prevFloat(Math.PI)));
}
if (i.getUB() >= 0) {
nup = (int) Math.floor(nextFloat(nextFloat(i.getUB() * 2.0) / prevFloat(Math.PI)));
} else {
nup = (int) Math.floor(nextFloat(nextFloat(i.getUB() * 2.0) / nextFloat(Math.PI)));
}
if ((((nup - nlo) % 4) + 4) % 4 == 3) {
return new RealIntervalConstant(-1.0, 1.0);
}
double clo = Math.min(prevFloat(Math.cos(i.getLB())), prevFloat(Math.cos(i.getUB())));
double cup = Math.max(nextFloat(Math.cos(i.getLB())), nextFloat(Math.cos(i.getUB())));
if ((((nup - nlo) % 4) + 4) % 4 == 0) {
return new RealIntervalConstant(clo, cup);
}
RealInterval mask = sinRange((((nlo + 1) % 4) + 4) % 4, (((nup + 1) % 4) + 4) % 4);
if (mask.getLB() < clo) {
clo = mask.getLB();
}
if (mask.getUB() > cup) {
cup = mask.getUB();
}
return new RealIntervalConstant(clo, cup);
}
/**
* Returns an interval that represents the result of 'sin(i)'.
* @param i an interval
* @return the result of 'sin(i)'
*/
public static RealInterval sin(RealInterval i) {
if (i.getUB() - i.getLB() > prevFloat(1.5 * prevFloat(Math.PI))) {
return new RealIntervalConstant(-1.0, 1.0);
}
int nlo, nup;
if (i.getLB() >= 0) {
nlo = (int) Math.floor(prevFloat(prevFloat(i.getLB() * 2.0) / nextFloat(Math.PI)));
} else {
nlo = (int) Math.floor(prevFloat(prevFloat(i.getLB() * 2.0) / prevFloat(Math.PI)));
}
if (i.getUB() >= 0) {
nup = (int) Math.floor(nextFloat(nextFloat(i.getUB() * 2.0) / prevFloat(Math.PI)));
} else {
nup = (int) Math.floor(nextFloat(nextFloat(i.getUB() * 2.0) / nextFloat(Math.PI)));
}
if ((((nup - nlo) % 4) + 4) % 4 == 3) {
return new RealIntervalConstant(-1.0, 1.0);
}
double clo = Math.min(prevFloat(Math.sin(i.getLB())), prevFloat(Math.sin(i.getUB())));
double cup = Math.max(nextFloat(Math.sin(i.getLB())), nextFloat(Math.sin(i.getUB())));
if ((((nup - nlo) % 4) + 4) % 4 == 0) {
return new RealIntervalConstant(clo, cup);
}
RealInterval mask = sinRange(((nlo % 4) + 4) % 4, ((nup % 4) + 4) % 4);
if (mask.getLB() < clo) {
clo = mask.getLB();
}
if (mask.getUB() > cup) {
cup = mask.getUB();
}
return new RealIntervalConstant(clo, cup);
}
/**
* Returns an interval that represents the result of a division of 'asin(i)'.
* 'res' is the one that will intersect the resulting interval
* and is given to provide sharpest interval.
* @param i an interval
* @param res an interval
* @return an interval that represents the result of the division : 'asin(i)'.
*/
public static RealInterval asin_wrt(RealInterval i, RealInterval res) {
double retSup = Double.POSITIVE_INFINITY, retInf = Double.NEGATIVE_INFINITY;
double asinl = prevFloat(Math.asin(i.getLB()));
double asinu = nextFloat(Math.asin(i.getUB()));
// Lower bound
int modSup = (int) Math.floor((res.getLB() + nextFloat(Math.PI)) / prevFloat(2 * Math.PI));
double decSup, decInf;
if (modSup < 0) {
decSup = nextFloat(2 * modSup * prevFloat(Math.PI));
decInf = prevFloat(2 * modSup * nextFloat(Math.PI));
} else if (modSup > 0) {
decSup = nextFloat(2 * modSup * nextFloat(Math.PI));
decInf = prevFloat(2 * modSup * prevFloat(Math.PI));
} else {
decSup = 0.0;
decInf = 0.0;
}
if (i.getLB() > -1.0) {
if ((res.getLB() > nextFloat(nextFloat(-Math.PI) - asinl + decSup)) &&
(res.getLB() < prevFloat(asinl + decInf))) {
retInf = prevFloat(asinl + decInf);
}
if ((res.getLB() > nextFloat(nextFloat(Math.PI) - asinl + decSup)) &&
(res.getLB() < prevFloat(asinl + 2 * prevFloat(Math.PI) + decInf))) {
retInf = prevFloat(asinl + 2 * prevFloat(Math.PI) + decInf);
}
}
if (i.getUB() < 1.0) {
if ((res.getLB() > asinu + decSup) &&
(res.getLB() < prevFloat(prevFloat(Math.PI) - asinu) + decInf)) {
retInf = prevFloat(prevFloat(Math.PI) - asinu) + decInf;
}
}
// Upper bound
modSup = (int) Math.floor((res.getUB() + nextFloat(Math.PI)) / prevFloat(2 * Math.PI));
if (modSup < 0) {
decSup = nextFloat(2 * modSup * prevFloat(Math.PI));
decInf = prevFloat(2 * modSup * nextFloat(Math.PI));
} else if (modSup > 0) {
decSup = nextFloat(2 * modSup * nextFloat(Math.PI));
decInf = prevFloat(2 * modSup * prevFloat(Math.PI));
} else {
decSup = 0.0;
decInf = 0.0;
}
if (i.getLB() > -1.0) {
if ((res.getUB() > nextFloat(nextFloat(-Math.PI) - asinl + decSup)) &&
(res.getUB() < prevFloat(asinl + decInf))) {
retSup = nextFloat(nextFloat(-Math.PI) - asinl + decSup);
}
if ((res.getUB() > nextFloat(nextFloat(Math.PI) - asinl + decSup)) &&
(res.getUB() < prevFloat(asinl + 2 * prevFloat(Math.PI) + decInf))) {
retSup = nextFloat(nextFloat(Math.PI) - asinl + decSup);
}
}
if (i.getUB() < 1.0) {
if ((res.getUB() > asinu + decSup) &&
(res.getUB() < prevFloat(prevFloat(Math.PI) - asinu) + decInf)) {
retSup = asinu + decSup;
}
}
return new RealIntervalConstant(retInf, retSup);
}
/**
* Returns an interval that represents the result of a division of 'acos(i)'.
* 'res' is the one that will intersect the resulting interval
* and is given to provide sharpest.
* @param i an interval
* @param res an interval
* @return an interval that represents the result of the division : 'acos(i)'.
*/
public static RealInterval acos_wrt(RealInterval i, RealInterval res) {
double retSup = Double.POSITIVE_INFINITY, retInf = Double.NEGATIVE_INFINITY;
double acosl = prevFloat(Math.acos(i.getUB()));
double acosu = nextFloat(Math.acos(i.getLB()));
// Lower bound
int modSup = (int) Math.floor(res.getLB() / prevFloat(2 * Math.PI));
double decSup, decInf;
if (modSup < 0) {
decSup = nextFloat(2 * modSup * prevFloat(Math.PI));
decInf = prevFloat(2 * modSup * nextFloat(Math.PI));
} else if (modSup > 0) {
decSup = nextFloat(2 * modSup * nextFloat(Math.PI));
decInf = prevFloat(2 * modSup * prevFloat(Math.PI));
} else {
decSup = 0.0;
decInf = 0.0;
}
if (i.getUB() < 1.0) {
if ((res.getLB() > nextFloat(decSup - acosl)) &&
(res.getLB() < prevFloat(decInf + acosl))) {
retInf = prevFloat(decInf + acosl);
}
if ((res.getLB() > nextFloat(2 * nextFloat(Math.PI) - acosl + decSup)) &&
(res.getLB() < prevFloat(2 * prevFloat(Math.PI) + acosl + decInf))) {
retInf = prevFloat(2 * prevFloat(Math.PI) + acosl + decInf);
}
}
if (i.getLB() > -1.0) {
if ((res.getLB() > nextFloat(acosu + decSup)) &&
(res.getLB() < prevFloat(2 * prevFloat(Math.PI) - acosu + decInf))) {
retInf = prevFloat(2 * prevFloat(Math.PI) - acosu + decInf);
}
}
// Upper bound
modSup = (int) Math.floor(res.getUB() / prevFloat(2 * Math.PI));
if (modSup < 0) {
decSup = nextFloat(2 * modSup * prevFloat(Math.PI));
decInf = prevFloat(2 * modSup * nextFloat(Math.PI));
} else if (modSup > 0) {
decSup = nextFloat(2 * modSup * nextFloat(Math.PI));
decInf = prevFloat(2 * modSup * prevFloat(Math.PI));
} else {
decSup = 0.0;
decInf = 0.0;
}
if (i.getUB() < 1.0) {
if ((res.getUB() > nextFloat(decSup - acosl)) &&
(res.getUB() < prevFloat(decInf + acosl))) {
retSup = nextFloat(decSup - acosl);
}
if ((res.getUB() > nextFloat(2 * nextFloat(Math.PI) - acosl + decSup)) &&
(res.getUB() < prevFloat(2 * prevFloat(Math.PI) + acosl + decInf))) {
retSup = nextFloat(2 * nextFloat(Math.PI) - acosl + decSup);
}
}
if (i.getLB() > -1.0) {
if ((res.getUB() > nextFloat(acosu + decSup)) &&
(res.getUB() < prevFloat(2 * prevFloat(Math.PI) - acosu + decInf))) {
retSup = nextFloat(acosu + decSup);
}
}
return new RealIntervalConstant(retInf, retSup);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy