All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.chocosolver.solver.constraints.nary.sum.PropSumBool Maven / Gradle / Ivy

There is a newer version: 4.10.17
Show newest version
/*
 * This file is part of choco-solver, http://choco-solver.org/
 *
 * Copyright (c) 2023, IMT Atlantique. All rights reserved.
 *
 * Licensed under the BSD 4-clause license.
 *
 * See LICENSE file in the project root for full license information.
 */
package org.chocosolver.solver.constraints.nary.sum;

import org.chocosolver.solver.constraints.Operator;
import org.chocosolver.solver.exception.ContradictionException;
import org.chocosolver.solver.variables.BoolVar;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.solver.variables.events.IntEventType;

import static org.chocosolver.solver.constraints.PropagatorPriority.BINARY;
import static org.chocosolver.util.tools.ArrayUtils.concat;

/**
 * A propagator for SUM(x_i) = y + b, where x_i are boolean variables
 * 
* Based on "Bounds Consistency Techniques for Long Linear Constraint"
* W. Harvey and J. Schimpf *

* * @author Charles Prud'homme * @since 18/03/11 */ public class PropSumBool extends PropSum { /** * The resulting variable */ protected final IntVar sum; /** * Creates a sum propagator: SUM(x_i) Op sum + b, where x_i are boolean variables. * Coefficients are induced by pos: * those before pos (included) are equal to 1, * the other ones are equal to -1. * * @param variables list of boolean variables * @param pos position of the last positive (induced) coefficient * @param o operator * @param sum resulting variable * @param b bound to respect * @param reactOnFineEvent set to true to react on fine events */ protected PropSumBool(BoolVar[] variables, int pos, Operator o, IntVar sum, int b, boolean reactOnFineEvent) { super(concat(variables, sum), pos, o, b, BINARY, reactOnFineEvent); this.sum = sum; } /** * Creates a sum propagator: SUM(x_i) Op sum + b, where x_i are boolean variables. * Coefficients are induced by pos: * those before pos (included) are equal to 1, * the other ones are equal to -1. * * @param variables list of boolean variables * @param pos position of the last positive (induced) coefficient * @param o operator * @param sum resulting variable * @param b bound to respect */ public PropSumBool(BoolVar[] variables, int pos, Operator o, IntVar sum, int b) { this(variables, pos, o, sum, b, false); } @Override public int getPropagationConditions(int vIdx) { switch (o) { case NQ: return IntEventType.INSTANTIATE.getMask(); case LE: if (vIdx == l - 1) { return IntEventType.upperBoundAndInst(); } else { return IntEventType.instantiation(); } case GE: if (vIdx == l - 1) { return IntEventType.lowerBoundAndInst(); } else { return IntEventType.instantiation(); } default: return IntEventType.boundAndInst(); } } @Override protected void prepare() { int i = 0, k; int lb = 0, ub = 0; for (; i < pos; i++) { // first the positive coefficients if (vars[i].isInstantiated()) { k = vars[i].getLB(); lb += k; ub += k; } else { ub++; } } for (; i < l - 1; i++) { // then the negative ones if (vars[i].isInstantiated()) { k = vars[i].getLB(); lb -= k; ub -= k; } else { lb--; } } sumLB = lb - sum.getUB(); sumUB = ub - sum.getLB(); } @Override protected void filterOnEq() throws ContradictionException { int F = b - sumLB; int E = sumUB - b; if (F < 0 || E < 0) { fails(); } int lb, ub, i = 0; // deal with sum lb = -sum.getUB(); ub = -sum.getLB(); if (sum.updateLowerBound(-F - lb, this)) { int nub = -sum.getLB(); E += nub - ub; ub = nub; } if (sum.updateUpperBound(-ub + E, this)) { int nlb = -sum.getUB(); F -= nlb - lb; } if (F <= 0 || E <= 0) { // the main reason we implemented a dedicated version // positive coefficients first while (i < pos) { lb = vars[i].getLB(); if (F <= 0 && vars[i].updateUpperBound(F + lb, this)) { E++; } ub = vars[i].getUB(); if (E <= 0 && vars[i].updateLowerBound(ub - E, this)) { F++; } i++; } // then negative ones while (i < l - 1) { lb = vars[i].getUB(); if (F <= 0 && vars[i].updateLowerBound(-F + lb, this)) { E--; } ub = vars[i].getLB(); if (E <= 0 && vars[i].updateUpperBound(ub + E, this)) { F--; } i++; } } } @Override protected void filterOnLeq() throws ContradictionException { int F = b - sumLB; int E = sumUB - b; if (F < 0) { fails(); } int lb, ub, i = 0; // deal with sum lb = -sum.getUB(); ub = -sum.getLB(); if (sum.updateLowerBound(-F - lb, this)) { int nub = -sum.getLB(); E += nub - ub; } if (F <= 0) { // the main reason we implemented a dedicated version // positive coefficients first while (i < pos) { lb = vars[i].getLB(); if (vars[i].updateUpperBound(F + lb, this)) { E++; } i++; } // then negative ones while (i < l - 1) { lb = vars[i].getUB(); if (vars[i].updateLowerBound(-F + lb, this)) { E--; } i++; } } if (E <= 0) { this.setPassive(); } } @Override protected void filterOnGeq() throws ContradictionException { int F = b - sumLB; int E = sumUB - b; if (E < 0) { fails(); } int lb, ub, i = 0; // deal with sum lb = -sum.getUB(); ub = -sum.getLB(); if (sum.updateUpperBound(-ub + E, this)) { int nlb = -sum.getUB(); F -= nlb - lb; } if (E <= 0) { // the main reason we implemented a dedicated version // positive coefficients first while (i < pos) { ub = vars[i].getUB(); if (vars[i].updateLowerBound(ub - E, this)) { F++; } i++; } // then negative ones while (i < l - 1) { ub = vars[i].getLB(); if (vars[i].updateUpperBound(ub + E, this)) { F--; } i++; } } if (F <= 0) { this.setPassive(); } } @Override public String toString() { StringBuilder linComb = new StringBuilder(20); linComb.append(pos == 0 ? "-" : "").append(vars[0].getName()); int i = 1; for (; i < pos; i++) { linComb.append(" + ").append(vars[i].getName()); } for (; i < l - 1; i++) { linComb.append(" - ").append(vars[i].getName()); } linComb.append(" ").append(o).append(" "); linComb.append(vars[i].getName()).append(" ").append(b < 0 ? "- " : "+ ").append(Math.abs(b)); return linComb.toString(); } @Override protected PropSum opposite() { BoolVar[] bvars = new BoolVar[vars.length - 1]; //noinspection SuspiciousSystemArraycopy System.arraycopy(vars, 0, bvars, 0, bvars.length); return new PropSumBool(bvars, pos, nop(o), vars[vars.length - 1], b + nb(o), reactToFineEvt); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy