All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.chocosolver.lp.MILP Maven / Gradle / Ivy

The newest version!
/*
 * This file is part of choco-solver, http://choco-solver.org/
 *
 * Copyright (c) 2024, IMT Atlantique. All rights reserved.
 *
 * Licensed under the BSD 4-clause license.
 *
 * See LICENSE file in the project root for full license information.
 */
package org.chocosolver.lp;

import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Deque;

import static org.chocosolver.lp.LinearProgram.Status.FEASIBLE;

/**
 * An extension of {@link LinearProgram} class that deals with mixed-integer linear program.
 * This class makes possible to declare integer variables and Boolean variables,
 * whose values must be integral in any solution.
 * 
*

* There are many ways to declare a MILP, very similar to LinearProgram. * But it is possible to indicates, using {@link BitSet}s which variables are integers or Booleans. *

*

Next, a call to {@link #branchAndBound()} runs a basic branch-and-bound algorithm and returns the status of the resolution. * If the status is {@link Status#FEASIBLE} * then the value assigned to each variable is accessible with {@code lp.lp.value(i);} * and the value of the objective function with {@code lp.objective();}. *

*

Note that calling {@link #simplex()} will solve the relaxed linear program. *

* * @author Charles Prud'homme * @since 01/03/2023 */ public class MILP extends LinearProgram { // bits set to true indicate integer variables private final BitSet integers; // bits set to true indicate Boolean variables // note that Boolean variables are also integer variables private final BitSet booleans; /** * Create a Mixed-Integer Linear Program instance that takes a mixed-integer linear program in standard form as input. * * @param matA is a mxn matrix * @param vecB is an m-vector * @param vecC is n-vector * @param integers bitset of integer variables * @param booleans bitset of Boolean variables * @param trace set to true to trace the resolution */ public MILP(double[][] matA, double[] vecB, double[] vecC, BitSet integers, BitSet booleans, boolean trace) { super(matA, vecB, vecC, trace); this.integers = integers; this.booleans = booleans; this.integers.or(booleans); } /** * Create a Mixed-Integer Linear Program instance that takes a mixed-integer linear program in standard form as input. * * @param matA is a mxn matrix * @param vecB is an m-vector * @param vecC is n-vector * @param integers bitset of integer variables * @param booleans bitset of Boolean variables */ public MILP(double[][] matA, double[] vecB, double[] vecC, BitSet integers, BitSet booleans) { this(matA, vecB, vecC, integers, booleans, false); } /** * Initialize a Mixed-Integer Linear Program instance. * * @param trace set to true to trace the resolution */ public MILP(boolean trace) { this(new double[0][0], new double[0], new double[0], new BitSet(), new BitSet(), trace); } /** * Initialize a Mixed-Integer Linear Program instance. */ public MILP() { this(false); } /** * Declare a new Boolean variable. * * @return the index of the variable */ public int makeBoolean() { if (m > 0) { throw new UnsupportedOperationException("Some constraints are already declared"); } integers.set(this.n); booleans.set(this.n); return n++; } /** * Declare n new Boolean variables */ public void makeBooleans(int n) { if (m > 0) { throw new UnsupportedOperationException("Some constraints are already declared"); } integers.set(this.n, this.n + n); booleans.set(this.n, this.n + n); this.n += n; } /** * Declare a new integer variable. * A variable is supposed to be non-negative (≥ 0). * * @return the index of the variable */ public int makeInteger() { if (m > 0) { throw new UnsupportedOperationException("Some constraints are already declared"); } integers.set(this.n); return n++; } /** * Declare n new integer variables */ public void makeIntegers(int n) { if (m > 0) { throw new UnsupportedOperationException("Some constraints are already declared"); } integers.set(this.n, this.n + n); this.n += n; } /** * Check that all integer variables (including Boolean variables) take integral values. * * @return true if the solution is integral, false otherwise. */ private boolean isIntegral() { boolean integral = true; for (int i = integers.nextSetBit(0); i > -1 && integral; i = integers.nextSetBit(i + 1)) { integral = isIntegral(i); } return integral; } /** * Check that an integer variable take integral value. * * @param i index of the variable * @return true if the variable takes integral value, false otherwise. */ private boolean isIntegral(int i) { assert integers.get(i) : "non integer variable"; return Math.rint(x[i]) == x[i] && (!booleans.get(i) || !(x[i] > 1.)); } /** * Drop the last m declared constraints. * * @param m number of constraints to drop */ private void dropUntil(int m) { while (this.m > m) { dropLast(); } } /** * This method solves MILP by branching on integer variables that are not integral and * bounding to eliminate sub-problems that cannot contain the optimal solution. *

If the problem is infeasible, this method terminates. * Otherwise, the optimal solution of this mixed integer linear program is computed and values of the variables * can be read calling {@link #value(int)}. *

* * @return the resolution status */ public Status branchAndBound() { return branchAndBound((i, v) -> 1.); } /** * This method solves MILP by branching on integer variables that are not integral and * bounding to eliminate sub-problems that cannot contain the optimal solution. *

If the problem is infeasible, this method terminates. * Otherwise, the optimal solution of this mixed integer linear program is computed and values of the variables * can be read calling {@link #value(int)}. *

* * @return the resolution status * @implNote This method assumes that the objective is to be maximized */ public Status branchAndBound(Score score) { // 1. add equations to bound Boolean variables int lastm = this.m; for (int i = booleans.nextSetBit(0); i > -1; i = booleans.nextSetBit(i + 1)) { addLeq(i, 1., 1.); } // 2. check if the Simplex returns an integral solution (or claims that no solution exists) Status relaxProb = simplex(); if (!relaxProb.equals(FEASIBLE)) { // 2a. if no solution exists, terminate // remove Boolean bounds dropUntil(lastm); return relaxProb; } if (isIntegral()) { // 2b. if solution is integral, thus optimal, terminate // remove Boolean bounds dropUntil(lastm); return relaxProb; } System.out.printf("%s\n", Arrays.toString(x)); // 3. look for integral optimal solution double bestObjective = Double.NEGATIVE_INFINITY; double[] bestX = null; Deque branchings = new ArrayDeque<>(); // 3a. partition the pb in two // this is expressed as binary decision partition(branchings, score); while (!branchings.isEmpty()) { Branching branch = branchings.getLast(); // 3b. deal with backtrack switch (branch.getBranch()) { case 2: // if the top decision cannot be refuted, then remove it branchings.removeLast(); dropLast(); continue; case 1: // if the top decision can be refuted, then refute it dropLast(); break; default: case 0: // otherwise do nothing break; } // 3c. restrict the search space branch.apply(this); if (trace) System.out.println("Branch on :" + branch); // 3d. check if the Simplex returns an integral solution relaxProb = simplex(); if (!relaxProb.equals(FEASIBLE)) { // if the current search contains no solution, then backtrack continue; } double currentObjectiveValue = objective(); if (currentObjectiveValue <= bestObjective) { // if the current solution is not better, then backtrack continue; } if (isIntegral()) { // if the solution is integral (and better), then store it bestObjective = currentObjectiveValue; bestX = this.x.clone(); if (trace) System.out.println("Integral better solution found"); continue; } // otherwise, partition the sub problem in two partition(branchings, score); } // 4. prepare result if (bestObjective > Double.NEGATIVE_INFINITY) { // if an integral optimal solution were found, then restore it this.status = Status.FEASIBLE; System.arraycopy(bestX, 0, this.x, 0, n); this.z = bestObjective; } else { // if no solution were found this.status = Status.INFEASIBLE; } // remove Boolean bounds dropUntil(lastm); return status; } /** * Partition heuristic, compute a score for all integer variables not integral and select the one with the smallest score * to partition the problem. *

* The first branch decreases the upper bound of the selected variable, * the second (and last) branch increases the lower bound of the selected variable. *

* * @param branchings the branching queue to fill * @param score the scoring function */ private void partition(Deque branchings, Score score) { double scoring = Double.POSITIVE_INFINITY; int idx = -1; for (int i = integers.nextSetBit(0); i > -1; i = integers.nextSetBit(i + 1)) { if (!isIntegral(i)) { double d = score.evaluate(i, value(i)); if (d < scoring) { scoring = d; idx = i; } } } if (idx > -1) { int val = (int) value(idx); if (booleans.get(idx)) { val = 0; } branchings.addLast(new Branching(idx, val)); } } /** * Interface to define score for variables */ public interface Score { double evaluate(int var, double val); } /** * Class to define branching object. *
* A Branching object reduces the domain of a variable var with respect to an integer value val. *
* It has four states, denoted by branch: *
    *
  • 0: the branching is created, but not applied
  • *
  • 1: (var ≤ val) is added to the MILP
  • *
  • 2: (var ≥ val +1) is added to the MILP
  • *
  • 3: the branching is unavailable
  • *
*/ private static class Branching { private final int var; private final int val; private int branch; public Branching(int var, int val) { this.var = var; this.val = val; this.branch = 0; } public int getBranch() { return branch; } void apply(MILP milp) { branch++; switch (branch) { case 1: milp.addLeq(var, 1, val); break; case 2: milp.addGeq(var, 1, val + 1); break; } } @Override public String toString() { String st = ""; switch (branch) { default: case 0: st += "init "; case 1: st += "x_" + (var + 1) + " <= " + val; break; case 3: st += "end "; case 2: st += "x_" + (var + 1) + " >= " + (val + 1); break; } return st; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy