All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.chocosolver.solver.constraints.IDecompositionFactory Maven / Gradle / Ivy

The newest version!
/*
 * This file is part of choco-solver, http://choco-solver.org/
 *
 * Copyright (c) 2024, IMT Atlantique. All rights reserved.
 *
 * Licensed under the BSD 4-clause license.
 *
 * See LICENSE file in the project root for full license information.
 */
package org.chocosolver.solver.constraints;

import gnu.trove.iterator.TIntIterator;
import gnu.trove.set.hash.TIntHashSet;
import org.chocosolver.solver.ISelf;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.constraints.extension.Tuples;
import org.chocosolver.solver.constraints.nary.automata.FA.IAutomaton;
import org.chocosolver.solver.constraints.nary.flow.PropMinCostMaxFlow;
import org.chocosolver.solver.exception.SolverException;
import org.chocosolver.solver.variables.BoolVar;
import org.chocosolver.solver.variables.IntVar;
import org.chocosolver.solver.variables.SetVar;
import org.chocosolver.util.tools.ArrayUtils;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import java.util.stream.Stream;

import static java.lang.Integer.MAX_VALUE;
import static java.lang.Integer.MIN_VALUE;
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.String.format;

/**
 * An interface dedicated to list decomposition of some constraints.
 * 

* Project: choco-solver. * * @author Charles Prud'homme * @since 12/06/2018. */ public interface IDecompositionFactory extends ISelf { /** * Posts a decomposition of an among constraint. * nbVar is the number of variables of the collection vars that take their value in values. *
gccat among *
* Decomposition described in : * C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, T. Walsh, * Among, common and disjoint Constraints * CP-2005 * * @param nbVar a variable * @param vars vector of variables * @param values set of values */ default void amongDec(IntVar nbVar, IntVar[] vars, IntVar[] values) { BoolVar[] ins = ref().boolVarArray("ins", vars.length); for (int i = 0; i < vars.length; i++) { BoolVar[] eqs = ref().boolVarArray("ins", values.length); for (int j = 0; j < values.length; j++) { ref().reifyXeqY(vars[i], values[j], eqs[j]); } ref().addClausesBoolOrArrayEqVar(eqs, ins[i]); } ref().sum(ins, "=", nbVar).post(); } /** * Creates and posts a decomposition of a cumulative constraint: associates a boolean * variable to each task and each point of time sich that the scalar product of boolean * variables per heights for each time never exceed capacity. * * @param starts starting time of each task * @param durations processing time of each task * @param heights resource consumption of each task * @param capacity resource capacity * @see org.chocosolver.solver.constraints.IIntConstraintFactory#cumulative(IntVar[], int[], * int[], int) */ default void cumulativeTimeDec(IntVar[] starts, int[] durations, int[] heights, int capacity) { int n = starts.length; // 1. find range of 't' parameters while creating variables int min_t = MAX_VALUE, max_t = MIN_VALUE; for (int i = 0; i < n; i++) { min_t = min(min_t, starts[i].getLB()); max_t = max(max_t, starts[i].getUB() + durations[i]); } for (int t = min_t; t <= max_t; t++) { BoolVar[] bit = ref().boolVarArray(format("b_%s_", t), n); for (int i = 0; i < n; i++) { ref().addClausesBoolAndArrayEqVar( new BoolVar[]{ ref().isLeq(starts[i], t), ref().isGeq(starts[i], t - durations[i] + 1) }, bit[i]); } ref().scalar( bit, Arrays.stream(heights, 0, n).toArray(), "<=", capacity ).post(); } } /** * Creates an element constraint: value = matrix[rowIndex-offset][colIndex-colOffset] * * @param value an integer variable taking its value in matrix * @param matrix a matrix of integer values * @param rowIndex index of the selected row * @param rowOffset offset for row index * @param colIndex index of the selected column * @param colOffset offset for column index */ default IntVar[] element(IntVar value, int[][] matrix, IntVar rowIndex, int rowOffset, IntVar colIndex, int colOffset) { IntVar[] results = new IntVar[matrix.length]; for (int r = 0; r < matrix.length; r++) { int min = IntStream.of(matrix[r]).min().orElse(IntVar.MIN_INT_BOUND); int max = IntStream.of(matrix[r]).max().orElse(IntVar.MAX_INT_BOUND); results[r] = ref().intVar("val[" + r + "]", min, max); ref().element(results[r], matrix[r], colIndex, colOffset).post(); } ref().element(value, results, rowIndex, rowOffset).post(); return results; } /** * Creates an element constraint: value = matrix[rowIndex-offset][colIndex-colOffset] * * @param value an integer variable taking its value in matrix * @param matrix a matrix of integer variables * @param rowIndex index of the selected row * @param rowOffset offset for row index * @param colIndex index of the selected column * @param colOffset offset for column index */ default IntVar[] element(IntVar value, IntVar[][] matrix, IntVar rowIndex, int rowOffset, IntVar colIndex, int colOffset) { IntVar[] results = new IntVar[matrix.length]; for (int r = 0; r < matrix.length; r++) { int min = Stream.of(matrix[r]).mapToInt(IntVar::getLB).min().orElse(IntVar.MIN_INT_BOUND); int max = Stream.of(matrix[r]).mapToInt(IntVar::getUB).max().orElse(IntVar.MAX_INT_BOUND); results[r] = ref().intVar("val[" + r + "]", min, max); ref().element(results[r], matrix[r], colIndex, colOffset).post(); } ref().element(value, results, rowIndex, rowOffset).post(); return results; } /** * Creates a global cardinality constraint (GCC): * Each value values[i] should be taken by exactly occurrences[i] variables of vars. *
* This constraint does not ensure any well-defined level of consistency, yet. * * @param vars collection of variables * @param values collection of constrained values * @param occurrences collection of cardinality variables * @param closed restricts domains of vars to values if set to true */ default void globalCardinalityDec(IntVar[] vars, IntVar[] values, IntVar[] occurrences, boolean closed) { assert values.length == occurrences.length; for (int i = 0; i < values.length; i++) { ref().count(values[i], vars, occurrences[i]).post(); } if (closed) { SetVar svars = ref().setVar(new int[]{}, Arrays.stream(vars) .flatMapToInt(IntVar::stream) .boxed() .collect(Collectors.toSet()) .stream().mapToInt(i -> i) .sorted().toArray()); SetVar svalues = ref().setVar(new int[]{}, Arrays.stream(values) .flatMapToInt(IntVar::stream) .boxed() .collect(Collectors.toSet()) .stream().mapToInt(i -> i) .sorted().toArray()); ref().subsetEq(svars, svalues).post(); } } /** * Creates and posts a decomposition of a regular constraint. * Enforces the sequence of vars to be a word * recognized by the deterministic finite automaton. * For example regexp = "(1|2)(3*)(4|5)"; * The same dfa can be used for different propagators. * * @param vars sequence of variables * @param automaton a deterministic finite automaton defining the regular language * @return array of variables that encodes the states, which can optionally be constrained too. */ @SuppressWarnings("UnusedReturnValue") default IntVar[] regularDec(IntVar[] vars, IAutomaton automaton) { int n = vars.length; IntVar[] states = new IntVar[n + 1]; TIntHashSet[] layer = new TIntHashSet[n + 1]; for (int i = 0; i <= n; i++) { layer[i] = new TIntHashSet(); } layer[0].add(automaton.getInitialState()); states[0] = ref().intVar("Q_" + ref().nextId(), layer[0].toArray()); TIntHashSet nexts = new TIntHashSet(); for (int i = 0; i < n; i++) { int ub = vars[i].getUB(); Tuples tuples = new Tuples(true); for (int j = vars[i].getLB(); j <= ub; j = vars[i].nextValue(j)) { TIntIterator layerIter = layer[i].iterator(); while (layerIter.hasNext()) { int k = layerIter.next(); nexts.clear(); automaton.delta(k, j, nexts); for (TIntIterator it = nexts.iterator(); it.hasNext(); ) { int succ = it.next(); if (i + 1 < n || automaton.isFinal(succ)) { layer[i + 1].add(succ); tuples.add(k, succ, j); } } } } states[i + 1] = ref().intVar("Q_" + ref().nextId(), layer[i + 1].toArray()); ref().table(new IntVar[]{states[i], states[i + 1], vars[i]}, tuples, "CT+").post(); } return states; } /** * Creates and posts a decomposition of a bin packing constraint. Bin Packing * formulation: forall b in [0,binLoad.length-1], load[b]=sum(w[i] | i in [0,w.length-1], bin[i] * = b+offset) forall i in [0,w.length-1], bin is in [offset,load.length-1+offset], * * @param bin IntVar representing the bin of each item * @param w int representing the size of each item * @param load IntVar representing the load of each bin (i.e. the sum of the size of the items * in it) * @param offset 0 by default but typically 1 if used within MiniZinc (which counts from 1 to n * instead of from 0 to n-1) */ default void binPackingDec(IntVar[] bin, int[] w, IntVar[] load, int offset) { ref().sum(load, "=", Arrays.stream(w).sum()).post(); for (int i = 0; i < bin.length; i++) { ref().member(bin[i], offset, load.length - 1 + offset).post(); } for (int i = 0; i < load.length; i++) { BoolVar[] in = new BoolVar[bin.length]; for (int j = 0; j < bin.length; j++) { in[j] = ref().isEq(bin[j], i + offset); } ref().scalar(in, w, "=", load[i]).post(); } } /** *

* Creates and posts a decomposition of the {@link IIntConstraintFactory#circuit(IntVar[], int)} constraint. *

*

* It relies on two {@link IIntConstraintFactory#allDifferent(IntVar[], String)} constraints and some * {@link IIntConstraintFactory#element(IntVar, IntVar[], IntVar, int)} constraints. *

* * @param S successors variables * @param offset 0 by default but typically 1 if used within MiniZinc * (which counts from 1 to n instead of from 0 to n-1) */ default void circuitDec(IntVar[] S, int offset) { int n = S.length; ref().allDifferent(S, "AC").post(); IntVar[] t = ref().intVarArray("t", n - 1, 1 + offset, n - 1 + offset); ref().allDifferent(t, "AC3").post(); ref().element(t[0], S, ref().intVar(offset), 0).post(); for (int i = 1; i < n - 2; i++) { ref().element(t[i], S, t[i - 1], 0).post(); } ref().element(ref().intVar(offset), S, t[n - 2], 0).post(); } /** * Creates a decomposition of the Argmax constraint. * z is the index of the maximum value of the collection of domain variables vars. * * @param z a variable * @param offset offset wrt to 'z' * @param vars a vector of variables, of size > 0 */ default void argmaxDec(IntVar z, int offset, IntVar[] vars) { int n = vars.length; //noinspection OptionalGetWithoutIsPresent int min = Stream.of(vars).mapToInt(IntVar::getLB).min().getAsInt(); int max = Stream.of(vars).mapToInt(IntVar::getUB).max().getAsInt(); IntVar[] q = new IntVar[n]; IntVar M = ref().intVar("M", n * min, n * (max + 1)); z.ge(offset).post(); z.lt(vars.length + offset).post(); for (int j = 0; j < n; j++) { q[j] = ref().intView(n, vars[j], n - j); z.ne(j + offset).iff(M.gt(q[j])).post(); } ref().max(M, q).post(); } /** * Creates a decomposition of the Argmin constraint. * z is the index of the minimum value of the collection of domain variables vars. * * @param z a variable * @param offset offset wrt to 'z' * @param vars a vector of variables, of size > 0 */ default void argminDec(IntVar z, int offset, IntVar[] vars) { int n = vars.length; //noinspection OptionalGetWithoutIsPresent int min = Stream.of(vars).mapToInt(IntVar::getLB).min().getAsInt(); int max = Stream.of(vars).mapToInt(IntVar::getUB).max().getAsInt(); IntVar[] q = new IntVar[n]; IntVar M = ref().intVar("M", n * min, n * (max + 1)); z.ge(offset).post(); z.lt(vars.length + offset).post(); for (int j = 0; j < n; j++) { q[j] = ref().intView(n, vars[j], j); z.ne(j + offset).iff(M.lt(q[j])).post(); } ref().min(M, q).post(); } /** *

* Creates a decomposition that encodes an "if-then-else" constraint. *

*

* If c[0] then y = x[0] *
else if c[1] then y = x[1] *
... *
else y is not constrained. *

* * @param c array of boolean variables * @param x array of ints * @param y a integer variable * @implNote This is encoded thanks to a table constraint. */ default void ifThenElseDec(BoolVar[] c, int[] x, IntVar y) { Tuples tuples = new Tuples(); int star = Math.max(2, y.getUB() + 1); tuples.setUniversalValue(star); int[] t = new int[c.length + 1]; Arrays.fill(t, 0); t[c.length] = star; tuples.add(t.clone()); Arrays.fill(t, star); for (int i = 0; i < c.length; i++) { if (i > 0) t[i - 1] = 0; t[i] = 1; t[c.length] = x[i]; tuples.add(t.clone()); } ref().table(ArrayUtils.append(c, new IntVar[]{y}), tuples).post(); } /** *

* Creates a decomposition that encodes an "if-then-else" constraint. *

*

* If c[0] then y = x[0] *
else if c[1] then y = x[1] *
... *
else y is not constrained. *

* * @param c array of boolean variables * @param x array of integer variables * @param y a integer variable * @implNote This introduces an additional variable * and is based on a table constraint and an element constraint. */ default void ifThenElseDec(BoolVar[] c, IntVar[] x, IntVar y) { /* BoolVar[] d = ref().boolVarArray(c.length); d[0] = ref().boolVar(true); //y.eq(x[0]).decompose().impliedBy(c[0]); c[0].imp(y.eq(x[0])).post(); for (int i = 1; i < c.length; i++) { d[i].eq(c[i - 1].not().and(d[i - 1])).post(); //y.eq(x[i]).decompose().impliedBy(c[i].and(d[i]).boolVar()); c[i].and(d[i]).imp(y.eq(x[i])).post(); }/*/ Tuples tuples = new Tuples(); int univ = Math.max(2, y.getUB() + 1); tuples.setUniversalValue(univ); int[] t = new int[c.length + 1]; Arrays.fill(t, 0); t[c.length] = c.length; tuples.add(t.clone()); Arrays.fill(t, univ); for (int i = 0; i < c.length; i++) { if (i > 0) t[i - 1] = 0; t[i] = 1; t[c.length] = i; tuples.add(t.clone()); } IntVar idx = ref().intVar(0, c.length); ref().table(ArrayUtils.append(c, new IntVar[]{idx}), tuples).post(); ref().element(y, ArrayUtils.append(x, new IntVar[]{y}), idx, 0).post(); //*/ } /** * Matrix multiplication A x B = C. * * @param A a m x n matrix * @param B a n x p matrix * @param C a m x p matrix */ default void product(IntVar[][] A, IntVar[][] B, IntVar[][] C) { assert A.length > 0 && B.length > 0 && C.length > 0; assert A[0].length > 0 && B[0].length > 0 && C[0].length > 0; assert A[0].length == B[0].length; assert A.length == C.length; assert B[0].length == C[0].length; int n = B.length; int m = C.length; int p = C[0].length; for (int i = 0; i < m; i++) { for (int j = 0; j < p; j++) { int finalI = i; int finalJ = j; ref().sum(IntStream.range(0, n) .mapToObj(k -> A[finalI][k].mul(B[k][finalJ]).intVar()) .toArray(IntVar[]::new), "=", C[i][j]).post(); } } } default void product(BoolVar[][] A, BoolVar[][] B, BoolVar[][] C) { assert A.length > 0 && B.length > 0 && C.length > 0; assert A[0].length > 0 && B[0].length > 0 && C[0].length > 0; assert A[0].length == B[0].length; assert A.length == C.length; assert B[0].length == C[0].length; int n = B.length; int m = C.length; int p = C[0].length; for (int i = 0; i < m; i++) { for (int j = 0; j < p; j++) { int finalI = i; int finalJ = j; ref().addClausesBoolOrArrayEqVar( IntStream.range(0, n) .mapToObj(k -> A[finalI][k].and(B[k][finalJ]).boolVar()) .toArray(BoolVar[]::new) , C[i][j]); } } } /** * A decomposition for the cost flow constraint. *

* The network is defined by a set of arc, each of them is made of * a starting node, * an ending node, * a supply (if positive) -- or demand (if negative), * a unit cost and * a flow variable that stores the quantity that goes on the arc. *

* *

* Since each arc comes with a cost and a flow that goes through it, a global cost of the total flow is defined. *

* * @param starts list of starting nodes, one per arc * @param ends ending nodes, one per arc * @param supplies supplies, one per arc * @param unitCosts unit cost, one per arc * @param flows amount flow, one per arc * @param cost cost of the flow * @param offset index of the smallest node */ default void costFlow(int[] starts, int[] ends, int[] supplies, int[] unitCosts, IntVar[] flows, IntVar cost, int offset) { // cost function ref().scalar(flows, unitCosts, "=", cost).post(); for (int i = 0; i < supplies.length; i++) { int io = i + offset; List src = new ArrayList<>(); List snk = new ArrayList<>(); for (int j = 0; j < starts.length; j++) { if (starts[j] == io) { src.add(flows[j]); } if (ends[j] == io) { snk.add(flows[j]); } } snk.add(ref().intVar(supplies[i])); ref().sum(src.toArray(new IntVar[0]), "=", snk.toArray(new IntVar[0])).post(); } new Constraint("", new PropMinCostMaxFlow(starts, ends, supplies, unitCosts, flows, cost, offset)).post(); } /** * Creates a decomposed version of tje intValuePrecedeChain(X, S, T) constraint. * Ensure that if there exists j such that X[j] = T, then, there must exist i < j such that * X[i] = S. * * @param X an array of variables * @param S a value * @param T another value */ default void intValuePrecedeChainDec(IntVar[] X, int S, int T) { Model model = X[0].getModel(); model.arithm(X[0], "!=", T).post(); for (int j = 1; j < X.length; j++) { BoolVar bj = model.arithm(X[j], "=", T).reify(); BoolVar[] bis = new BoolVar[j]; for (int i = 0; i < j; i++) { bis[i] = model.arithm(X[i], "=", S).reify(); } model.ifThen(bj, model.or(bis)); } } /** * Creates a decomposed version of the intValuePrecedeChain(X, V) constraint. * Ensure that, for each pair of V[k] and V[l] of values in V, such that k < l, * if there exists j such that X[j] = V[l], then, there must exist i < j such that * X[i] = V[k]. * * @param X array of variables * @param V array of (distinct) values */ default void intValuePrecedeChainDec(IntVar[] X, int[] V) { if (V.length > 1) { TIntHashSet values = new TIntHashSet(); values.add(V[0]); for (int i = 1; i < V.length; i++) { if (values.contains(V[i])) { throw new SolverException("\"int_value_precede\" requires V to be made of distinct values"); } values.add(V[i]); intValuePrecedeChainDec(X, V[i - 1], V[i]); } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy