org.chocosolver.solver.search.strategy.BoundSearch Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of choco-solver Show documentation
Show all versions of choco-solver Show documentation
Open-source constraint solver.
The newest version!
/*
* This file is part of choco-solver, http://choco-solver.org/
*
* Copyright (c) 2024, IMT Atlantique. All rights reserved.
*
* Licensed under the BSD 4-clause license.
*
* See LICENSE file in the project root for full license information.
*/
package org.chocosolver.solver.search.strategy;
import gnu.trove.map.hash.TIntIntHashMap;
import org.chocosolver.solver.Cause;
import org.chocosolver.solver.Model;
import org.chocosolver.solver.ResolutionPolicy;
import org.chocosolver.solver.exception.ContradictionException;
import org.chocosolver.solver.search.strategy.assignments.DecisionOperatorFactory;
import org.chocosolver.solver.search.strategy.decision.Decision;
import org.chocosolver.solver.search.strategy.decision.DecisionPath;
import org.chocosolver.solver.search.strategy.decision.IntDecision;
import org.chocosolver.solver.search.strategy.strategy.AbstractStrategy;
import org.chocosolver.solver.variables.IntVar;
import java.util.Random;
/**
* BEWARE: ONLY FOR INTEGERS (lets the default search work for other variable types)
*
* Search heuristic combined with a constraint performing strong consistency on the next decision variable
* and branching on the value with the best objective bound (for optimization) and branches on the lower bound for SAT problems.
*
* @author Jean-Guillaume FAGES
*/
public class BoundSearch extends AbstractStrategy {
private final Model model;
private final DecisionPath decisionPath;
private final AbstractStrategy definedSearch; // int search into which this is plugged
private final TIntIntHashMap vb = new TIntIntHashMap(); // value-bound map
private IntVar variable; // current variable, on which this branches
private final Random rd = new Random(0); // only to alternate between LB and UB for bounded domain filtering
@SuppressWarnings("WeakerAccess")
public int MAX_DOM_SIZE = 100; // maximum size of an enumerated domain to apply strong consistency on it
@SuppressWarnings("WeakerAccess")
public BoundSearch(AbstractStrategy mainSearch) {
super(mainSearch.getVariables());
model = vars[0].getModel();
definedSearch = mainSearch;
decisionPath = model.getSolver().getDecisionPath();
}
@Override
public boolean init() {
return definedSearch.init();
}
@Override
public void remove() {
this.definedSearch.remove();
}
@Override
public Decision getDecision() {
if (variable == null || variable.isInstantiated()) {
Decision d = definedSearch.getDecision();
vb.clear();
if (d == null) return null;
if ((d.getDecisionVariable().getTypeAndKind() & IntVar.INT) != 0) variable = d.getDecisionVariable();
else {
return d;
}
}
if (variable.getDomainSize() < MAX_DOM_SIZE) {
if (variable.hasEnumeratedDomain()) {
vb.clear();
for (int v = variable.getLB(); v <= variable.getUB(); v = variable.nextValue(v)) {
int bound = bound(v);
if (bound == Integer.MAX_VALUE) {
return removeVal(v);
// stops at first infeasible value because there is no meta-decision objects
// could be improved (remove all infeasible values) by using a move instead of a search heuristic
} else {
vb.put(v, bound);
}
}
return decisionPath.makeIntDecision(variable, DecisionOperatorFactory.makeIntEq(), getBestVal());
} else {
vb.clear();
int lbB = bound(variable.getLB());
int ubB = bound(variable.getUB());
if (lbB == Integer.MAX_VALUE && ubB == Integer.MAX_VALUE) {
return removeVal(rd.nextBoolean() ? variable.getLB() : variable.getUB());
} else {
return decisionPath.makeIntDecision(variable, DecisionOperatorFactory.makeIntEq(),
lbB <= ubB ? variable.getLB() : variable.getUB());
}
}
} else {
vb.clear();
return definedSearch.getDecision();
}
}
private IntDecision removeVal(int val) {
IntDecision d = decisionPath.makeIntDecision(variable, DecisionOperatorFactory.makeIntNeq(), val);
d.setRefutable(false);
return d;
}
private int bound(int val) {
int cost;
model.getEnvironment().worldPush();
try {
variable.instantiateTo(val, Cause.Null);
model.getSolver().getEngine().propagate();
ResolutionPolicy rp = model.getSolver().getObjectiveManager().getPolicy();
if (rp == ResolutionPolicy.SATISFACTION) {
cost = 1;
} else if (rp == ResolutionPolicy.MINIMIZE) {
cost = ((IntVar) model.getObjective()).getLB();
} else {
cost = -((IntVar) model.getObjective()).getUB();
}
} catch (ContradictionException cex) {
cost = Integer.MAX_VALUE;
}
model.getSolver().getEngine().flush();
model.getEnvironment().worldPop();
return cost;
}
private int getBestVal() {
int coef = 1;
if (variable.hasEnumeratedDomain()) {
int bestCost = Integer.MAX_VALUE;
int bestV = variable.getUB();
for (int v = variable.getLB(); v <= variable.getUB(); v = variable.nextValue(v)) {
int c = vb.get(v);
if (c < bestCost * coef) {
bestCost = c;
bestV = v;
}
}
return bestV;
} else {
return bound(variable.getLB()) < bound(variable.getUB()) * coef ? variable.getLB() : variable.getUB();
}
}
}